Скорость воды в трубопроводе: факторы и расчеты

Какие факторы влияют на скорость воды в трубе и как произвести необходимые вычисления

Сооружая автономную водопроводную сеть для частного дома, необходимо задуматься о достаточно большом количестве параметров, которые сделают водопровод сетью, работающей долгое время и не требующей больших затрат на ее обслуживание. Один из важных факторов – скорость движения воды в трубопроводах водоснабжения.

  1. Почему скорость должна быть определенного значения
  2. Типовые значения скорости
  3. Примеры расчетов
  4. Скорость потока

Почему скорость должна быть определенного значения

Скорость воды в трубах учитывают при выборе материала и диаметра трубопровода

Если скорость недостаточная, на стенках труб будут осаждаться нерастворенные частицы, которые поступают с водой из скважины или колодца. Это приведет к заиливанию и уменьшению проходного сечения. В результате снизится напор и производительность всей системы в целом.

Если скорость воды в водопроводе большая, это приводит к увеличению давления перекачиваемой жидкости на стенки труб и их стыки. Велика вероятность, что в каком-то месте трубопровода со временем произойдет протечка.

Типовые значения скорости

Существуют рекомендованные значения скорости водяного потока в трубах водоснабжения, которые зависят от материала, из которого водопроводные трубы изготовлены, новые они или уже были в эксплуатации. Вот несколько зависимостей, которые помогут сделать правильный выбор.

Скорость напрямую зависит и от диаметра труб. При этом любые жидкости, движущиеся по трубам, подчиняются законам физики. В водопроводе эти законы стремятся остановить движение воды. Сила, которая к этому прикладывается, называется силой сопротивления. Она ведет к потерям напора, а соответственно и к снижению скорости.

Обычно формулу скорости потока воды в трубопроводах, как таковую, не применяют нигде. Потому что нет смысла рассчитывать то, что уже доказано и находится в свободном доступе в таблицах. Ее принимают, как стандартную рекомендованную величину.

Сам параметр скорости потока воды в трубопроводах применяют для расчета нескольких характеристик водопроводной сети. К примеру, при расчете расхода воды или выбора диаметра труб.

Под водопроводом надо понимать сети питьевой воды, горячего водоснабжения и противопожарной системы.

Примеры расчетов

Чаще с помощью скорости рассчитывают расход воды или диаметр труб. Для этого используют формулу:

W= V×S, где W – расход, V – скорость, S – площадь сечения выбранных труб.

По одной из таблиц выбирается скорость движения воды. Если это пожарный водопровод, в нем данный параметр должен быть в пределах 3 м/с. Достаточно большое значение, но для водопровода этого типа величина усредненная, бывает и больше.

К примеру, надо рассчитать сечение трубы. Для этого дополнительно нужно определиться, сколько воды будет расходоваться через спринклеры или дренчеры противопожарной системы. Это также табличная величина, зависящая от защищаемой площади здания или сооружения. Пусть это будет пожарная система в одну струю, в которой обычно расход составляет 3,5 л/сек или 0,0035 м³/час.

Зная все требуемые параметры водопровода, можно рассчитать сечение труб, которые будут монтироваться в сеть:

Зная сечение трубы, можно подсчитать ее диаметр. Формула площади такова: S=πD²/4, отсюда формула диаметра:

D=√4S/π=√(4×0,0012:3,14)=0,0038 м или 38 мм. Такого значения диаметра труб не существует, поэтому надо выбрать стандартное большее — 40 мм.

Это самый простой пример. В реальности большинство водопроводных систем – это сложные схемы, в которых присутствуют отводы, подсоединяемые участки, установленная запорная арматура и прочие препятствия, которые снижают быстроту движения воды в водопроводе. При этом во многих сетях установлены насосные станции, которые формируют производительность и напор. Нередко в систему устанавливаются насколько насосных агрегатов, которые работают попеременно: по два, по три, по одному, в разных последовательностях включения и отключения.

В таких случаях расчет проводят ступенчато, для каждого участка по отдельности. При этом обязательно учитываются дополнительные коэффициенты, которые нивелируют полученные значения, а также потери напора на фитингах и в местах установки запорной арматуры.

Скорость потока

Скорость воды в трубе имеет два значения: у стенок она равна нулю, у оси — максимальный параметр. Чем дальше от оси, тем слабее движется вода.

Если рассматривать цилиндр, по которому движется жидкость, как воображаемую модель, можно сказать, что на воду внутри трубы не будут действовать никакие силы. Но в реальности все не так. Первая сила, которая действует на водяной поток, — сила трения о внутренние стенки трубопровода. Она уменьшается с отдалением от стенок.

Вторая сила – нагнетающая, действующая от насоса в направлении движении потока. Если этот параметр всегда неизменный, течение жидкости внутри трубы происходит ламинарно. Скорость остается неизменной, у стенок она равна нулю. Это идеальная ситуация.

На практике так случается редко. Факторов для этого много, к примеру, включение и отключение насоса, засорение фильтра и так далее. В таком случае у стенок трубопроводов скорость изменяется резко: то больше, то меньше с иногда огромной разницей. В остальной части эта характеристика изменяется меньше.

Многие интернет-порталы предлагают калькуляторы, с помощью которых можно рассчитать скорость потока жидкости, проходящей через цилиндр. Для этого потребуется всего лишь два параметра:

  • внутренний диаметр трубы в мм;
  • производительность водопровода, а точнее, объем жидкости, проходящей через трубу за определенный промежуток времени (м³/час).
Читайте также:
Свод правил для внутреннего водопровода и канализации зданий

Но в таких калькуляторах не учитывается материал, из которого трубы изготовлены, а также наличие или отсутствие фитингов, дополнительных контуров и запорной арматуры. Эти расчетные сервисы можно взять за основу, но точного значения от них ждать не стоит.

Решая вопрос, связанный со скоростью перемещения водного потока внутри водопроводной сети, необходимо четко определиться со сложностью системы, производительностью насосных станций и видами используемых труб. Проще всего – подобрать это значение по таблице, в которой показатели давно рассчитаны и гарантированно достоверны.

Скорость воды в трубопроводе: факторы и расчеты

При построении сети автономного водоснабжения для частного дома необходимо продумать достаточно большое количество параметров, которые сделают водопровод сетью, работающей длительное время и не требующей больших затрат на ее содержание. Одним из важных факторов является скорость движения воды в водопроводах.

  1. Почему скорость должна быть определенного значения
  2. Типовые значения скорости
  3. Примеры расчетов
  4. Скорость потока

Почему скорость должна быть определенного значения

Скорость воды в трубах учитывается при выборе материала и диаметра трубопровода

Если скорость недостаточна, нерастворенные частицы оседают на стенках трубы, которые поступают из воды колодца или колодца. Это приведет к заиливанию и уменьшению проходного сечения. В результате давление и производительность всей системы снизятся.

Если скорость воды в водопроводной сети высока, это приводит к увеличению давления перекачиваемой жидкости на стенки труб и их стыки. Существует высокая вероятность того, что в какой-то момент трубопровода произойдет утечка.

Типовые значения скорости

Существуют рекомендуемые значения расхода воды в водопроводных трубах, которые зависят от материала, из которого изготовлены водопроводные трубы, являются ли они новыми или уже находились в эксплуатации. Вот несколько зависимостей, которые помогут вам сделать правильный выбор.

Диаметр трубы, мм Скорость пластиковой трубы м / с Скорость стальной трубы, м / с
новый старый
пятьдесят 22 0,7 0,062
100 одиннадцать 0,74 0,068
200 7,6 0,82 0,076

Скорость напрямую зависит от диаметра труб. Кроме того, все жидкости, движущиеся по трубам, подчиняются законам физики. В водопроводе эти законы пытаются остановить движение воды. Приложенная к нему сила называется силой сопротивления. Это приводит к перепадам давления и, как следствие, к снижению скорости.

Обычно формула расхода воды в трубопроводах как таковая нигде не используется. Потому что нет смысла подсчитывать то, что уже доказано и находится в свободном доступе в таблицах. Принимается за стандартное рекомендуемое значение.

Сам параметр расхода воды в трубах используется для расчета различных характеристик водопроводной сети. Например, при расчете расхода воды или выборе диаметра труб.

К водопроводным системам относятся системы питьевого водоснабжения, горячего водоснабжения и пожаротушения.

Примеры расчетов

Чаще всего скорость используется для расчета расхода воды или диаметра трубы. Для этого воспользуйтесь формулой:

W = V × S, где W – расход, V – скорость, S – площадь поперечного сечения выбранных труб.

По одной из таблиц подбирается скорость движения воды. Если это противопожарный водопровод, то этот параметр должен быть в пределах 3 м / с. Довольно большое значение, но для водопровода такого типа значение усредненное, иногда больше.

Например, необходимо рассчитать сечение трубы. Для этого также необходимо определить, сколько воды будет израсходовано через оросители или оросители системы пожаротушения. Это также табличное значение, зависящее от защищаемой зоны здания или сооружения. Пусть это будет система пожаротушения одним потоком, где расход обычно составляет 3,5 л / сек или 0,0035 м³ / час.

Зная все необходимые параметры водопровода, можно рассчитать сечение труб, которые будут проложены в сети:

S = W / V = ​​0,0035: 3 = 0,0012 м².

Зная сечение трубы, можно рассчитать ее диаметр. Формула площади: S = πD² / 4, отсюда формула диаметра:

D = √4S / π = √ (4 × 0,0012: 3,14) = 0,0038 м или 38 мм. Для диаметра трубы такого значения нет, поэтому необходимо выбирать самый большой стандарт – 40 мм.

Это самый простой пример. По сути, большинство систем водоснабжения представляют собой сложные схемы, в которых присутствуют изгибы, соединенные участки, установлены запорная арматура и другие препятствия, снижающие скорость движения воды в системе водоснабжения. При этом во многих сетях устанавливаются насосные станции, которые формируют производительность и давление. Часто, сколько насосных агрегатов установлено в системе, которые работают поочередно: по два, три, по одному, в разной последовательности включения и выключения.

В таких случаях расчет выполняется поэтапно, по каждому разделу отдельно. При этом необходимо учитывать дополнительные коэффициенты, нейтрализующие полученные значения, а также потери давления на арматуре и в местах установки запорной арматуры.

Скорость потока

Скорость воды в трубе имеет два значения: у стенок она равна нулю, по оси – максимальный параметр. Чем дальше от оси, тем слабее движется вода.

Читайте также:
Водопроводная труба диаметром 50 мм: материал изготовления, критерии выбора и цена за метр

Если мы рассмотрим цилиндр, через который движется жидкость, как воображаемую модель, мы можем сказать, что никакая сила не будет действовать на воду внутри трубки. Но на самом деле это не так. Первая сила, действующая на поток воды, – это сила трения о внутренние стенки трубопровода. Он уменьшается с удалением от стен.

Вторая сила – это сила накачки, которая действует от насоса в направлении потока. Если этот параметр всегда неизменен, поток жидкости внутри трубки ламинарный. Скорость осталась неизменной, на стенках она нулевая. Это идеальная ситуация.

На практике такое случается редко. На это влияет множество факторов, например, включение и выключение насоса, засорение фильтра и так далее. В этом случае у стенок трубопроводов скорость резко меняется: то больше, то меньше, то с огромной разницей. В остальном эта характеристика меняется меньше.

Многие онлайн-порталы предлагают калькуляторы, которые можно использовать для расчета расхода жидкости, проходящей через цилиндр. Для этого требуется всего два параметра:

  • внутренний диаметр трубы в мм;
  • производительность системы водоснабжения, а точнее объем жидкости, проходящей по трубе за определенный период времени (м³ / час).

Но такие калькуляторы не учитывают материал, из которого изготовлены трубы, а также наличие или отсутствие фитингов, дополнительных контуров и клапанов. Эти расчетные услуги можно взять за основу, но не стоит ожидать от них точной стоимости.

При решении задачи о скорости движения потока воды в водопроводной сети необходимо четко определить сложность системы, производительность насосных станций и типы используемых труб. Проще всего выбрать это значение из таблицы, индикаторы рассчитаны давно и гарантированно надежны.

Жидкость, давление, скорость – основы закона сантехники

Главная страница » Жидкость, давление, скорость – основы закона сантехники

Сантехника, казалось бы, не даёт особого повода вникать в дебри технологий, механизмов, заниматься скрупулёзными расчётами для выстраивания сложнейших схем. Но такое видение – это поверхностный взгляд на сантехнику. Реальная сантехническая сфера ничуть не уступает по сложности процессов и, также как многие другие отрасли, требует профессионального подхода. В свою очередь профессионализм – это солидный багаж знаний, на которых основывается сантехника. Окунёмся же (пусть не слишком глубоко) в сантехнический учебный поток, дабы приблизиться на шаг к профессиональному статусу сантехника.

Закон Паскаля

Фундаментальная основа современной гидравлики сформировалась, когда Блезу Паскалю удалось обнаружить, что действие давления жидкости неизменно в любом направлении. Действие жидкостного давления направлено под прямым углом к площади поверхностей.

Если измерительное устройство (манометр) разместить под слоем жидкости на определенной глубине и направлять его чувствительный элемент в разные стороны, показания давления будут оставаться неизменными в любом положении манометра.

То есть давление жидкости никак не зависит от смены направления. Но давление жидкости на каждом уровне зависит от параметра глубины. Если измеритель давления перемещать ближе к поверхности жидкости, показания будут уменьшаться.

Соответственно, при погружении измеряемые показания будут увеличиваться. Причём в условиях удвоения глубины, параметр давления также удвоится.

Закон Паскаля наглядно демонстрирует действие давления воды в самых привычных условиях для современного быта

Отсюда логичный вывод: давление жидкости следует рассматривать прямо пропорциональной величиной для параметра глубины. В качестве примера рассмотрим прямоугольный контейнер размерами 10х10х10 см., который заполнен водой на 10 см глубины, что по объёмной составляющей будет равняться 10 см 3 жидкости.

Этот объём воды в 10 см 3 весит 1 кг. Используя имеющуюся информацию и уравнение для расчёта, несложно вычислить давление на дне контейнера. Например: вес столба воды высотой 10 см и площадью поперечного сечения 1 см 2 составляет 100 г (0,1 кг). Отсюда давление на 1 см 2 площади:

P = F / S = 100 / 1 = 100 Па (0,00099 атмосферы)

Если глубина столба воды утроится, вес уже будет составлять 3 * 0,1 = 300 г (0,3 кг), и давление, соответственно увеличится втрое. Таким образом, давление на любой глубине жидкости равноценно весу столба жидкости на этой глубине, поделённому на площадь поперечного сечения столба.

Давление водяного столба: 1 — стенка контейнера для жидкости; 2 — давление столба жидкости на донную часть сосуда; 3 — давление на основание контейнера; А, С — области давления на боковины; В — прямой водяной столб; Н — высота столба жидкости

Объем жидкости, создающей давление, называется гидравлический напор жидкости. Давление жидкости благодаря гидравлическому напору, также остаётся зависимым от плотности жидкости.

Сила тяжести

Гравитация — одна из четырех сил природы. Мощь гравитационной силы между двумя объектами зависит от массы этих объектов. Чем массивнее объекты, тем сильнее гравитационное притяжение.

Когда выливается вода из контейнера, гравитация Земли притягивает воду к земной поверхности. Можно наблюдать тот же самый эффект, если на разных высотах разместить два ведра воды и соединить их трубкой.

Достаточно задать ход жидкости в трубке из одного ведра в другой, после чего сработает сила гравитации, и процесс перелива продолжится самопроизвольно. Гравитация, приложенные силы и атмосферное давление являются статическими факторами, которые в равной степени относятся к жидкостям, находящимся в покое или в движении.

Читайте также:
Обратный клапан для водопровода: принцип работы, виды, устройство и установка

Силы инерции и трения являются динамическими факторами, которые действуют только на жидкости в движении. Математическая сумма силы тяжести, приложенной силы и атмосферного давления, представляет собой статическое давление, полученное в любой зоне жидкости и в любой момент времени.

Статическое давление

Статическое давление существует в дополнение к любым динамическим факторам, которые также могут присутствовать одновременно. Закон Паскаля гласит:

Давление, создаваемое жидкостью, действует равноценно по всем направлениям и под прямым углом к содержащимся поверхностям.

Это определение касается только жидкостей, находящихся в полном покое или практически недвижимых. Определение справедливо также только для факторов, составляющих статический гидравлический напор.

Очевидно: когда скорость движения становится фактором, в расчёт берётся направление. Сила, привязанная к скорости, также должна иметь направление. Поэтому закон Паскаля, как таковой, не применяется к динамическим факторам мощности потока жидкости.

Скорость движения потока зависит от многих факторов, включая послойное разделение жидкостной массы, а также сопротивление, создаваемое разными факторами

Динамические факторы инерции и трения привязаны к статическим факторам. Скоростной напор и потери давления привязаны к гидростатическому напору жидкости. Однако часть скоростного напора всегда может быть преобразована в статический напор.

Сила, которая может быть вызвана давлением или напором при работе с жидкостями, необходима, чтобы начать движение тела, если оно находится в состоянии покоя, и присутствует в той или иной форме, когда движение тела заблокировано.

Поэтому всякий раз, когда задана скорость движения жидкости, часть ее исходного статического напора используется для организации этой скорости, которая в дальнейшем существует уже как напорная скорость.

Объем и скорость потока

Объем жидкости, проходящей через определённую точку в заданное время, рассматривается как объем потока или расход. Объем потока обычно выражается литрами в минуту (л/мин) и связан с относительным давлением жидкости. Например, 10 литров в минуту при 2,7 атм.

Скорость потока (скорость жидкости) определяется как средняя скорость, при которой жидкость движется мимо заданной точки. Как правило, выражается метрами в секунду (м/с) или метрами в минуту (м/мин). Скорость потока является важным фактором при калибровке гидравлических линий.

Объём и скорость потока жидкости традиционно считаются «родственными» показателями. При одинаковом объёме передачи скорость может меняться в зависимости от сечения прохода

Объем и скорость потока часто рассматриваются одновременно. При прочих равных условиях (при неизменном объеме ввода), скорость потока возрастает по мере уменьшения сечения или размера трубы, и скорость потока снижается по мере увеличения сечения.

Так, замедление скорости потока отмечается в широких частях трубопроводов, а в узких местах, напротив, скорость увеличивается. При этом объем воды, проходящей через каждую из этих контрольных точек, остаётся неизменным.

Принцип Бернулли

Широко известный принцип Бернулли выстраивается на той логике, когда подъем (падение) давления текучей жидкости всегда сопровождается уменьшением (увеличением) скорости. И наоборот, увеличение (уменьшение) скорости жидкости приводит к уменьшению (увеличению) давления.

Этот принцип заложен в основе целого ряда привычных явлений сантехники. В качестве тривиального примера: принцип Бернулли «виновен» в том, что занавес душа «втягивается внутрь», когда пользователь включает воду.

Разность давлений снаружи и внутри вызывает силовое усилие на занавес душа. Этим силовым усилием занавес и втягивается внутрь.

Другим наглядным примером является флакон духов с распылителем, когда нажимом кнопки создаётся область низкого давления за счёт высокой скорости воздуха. А воздух увлекает за собой жидкость.

Принцип Бернулли для самолётного крыла: 1 — низкое давление; 2 — высокое давление; 3 — быстрое обтекание; 4 — медленное обтекание; 5 — крыло

Принцип Бернулли также показывает, почему окна в доме имеют свойства самопроизвольно разбиваться при ураганах. В таких случаях крайне высокая скорость воздуха за окном приводит к тому, что давление снаружи становится намного меньше давления внутри, где воздух остаётся практически без движения.

Существенная разница в силе попросту выталкивает окна наружу, что приводит к разрушению стекла. Поэтому когда приближается сильный ураган, по сути, следует открыть окна как можно шире, чтобы уравнять давление внутри и снаружи здания.

И ещё парочка примеров, когда действует принцип Бернулли: подъем самолёта с последующим полётом за счёт крыльев и движение «кривых шаров» в бейсболе.

В обоих случаях создаётся разница скорости проходящего воздуха мимо объекта сверху и снизу. Для крыльев самолета разница скорости создаётся движением закрылков, в бейсболе — наличием волнистой кромки.

Практика домашнего сантехника на видеоролике

Полезный для получения практики сантехники видеоролик ниже демонстрирует некоторые приёмы, которые в любой момент могут потребоваться потенциальному хозяину жилища. Рекомендуется просмотр этого видео для получения актуальной информации по сантехническим манипуляциям:

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Читайте также:
Водопроводные трубы: виды, размеры, критерии выбора и цены

Какие факторы влияют на скорость воды в трубе и как произвести необходимые вычисления

Диаметр трубопроводов, скорость течения и расход теплоносителя.

Данный материал предназначен понять, что такое диаметр, расход и скорость течения. И какие связи между ними. В других материалах будет подробный расчет диаметра для отопления.

Для того чтобы вычислить диаметр необходимо знать:

1. Расход теплоносителя (воды) в трубе. 2. Сопротивление движению теплоносителя (воды) в трубе определенной длины.

Вот необходимые формулы, которые нужно знать:

S-Площадь сечения м 2 внутреннего просвета трубы π-3,14-константа – отношение длины окружности к ее диаметру. r-Радиус окружности, равный половине диаметра, м Q-расход воды м 3 /с D-Внутренний диаметр трубы, м V-скорость течения теплоносителя, м/с

Сопротивление движению теплоносителя.

Любой движущийся внутри трубы теплоноситель, стремиться к тому, чтобы прекратить свое движение. Та сила, которая приложена к тому, чтобы остановить движение теплоносителя – является силой сопротивления.

Это сопротивление, называют – потерей напора. То есть движущийся теплоноситель по трубе определенной длины теряет напор.

Напор измеряется в метрах или в давлениях (Па). Для удобства в расчетах необходимо использовать метры.

Для того, чтобы глубже понять смысл данного материла, рекомендую проследить за решением задачи.

В трубе с внутренним диаметром 12 мм течет вода, со скоростью 1м/с. Найти расход.

Необходимо воспользоваться вышеуказанными формулами:

1. Находим сечение 2. Находим расход
D=12мм=0,012 м п=3,14

S=3.14•0,012 2 /4=0,000113 м 2

Q=0,000113•1=0,000113 м 3 /с = 0,4 м 3 /ч.

Имеется насос, создающий постоянный расход 40 литров в минуту. К насосу подключена труба протяженностью 1 метр. Найти внутренний диаметр трубы при скорости движения воды 6 м/с.

Q=40л/мин=0,000666666 м 3 /с

Из выше указанных формул получил такую формулу.

Каждый насос имеет вот такую расходно-сопротивляемую характеристику:

Это означает, что наш расход в конце трубы будет зависеть от потери напора, которое создается самой трубой.

Чем длиннее труба, тем больше потеря напора. Чем меньше диаметр, тем больше потеря напора. Чем выше скорость теплоносителя в трубе, тем больше потеря напора. Углы, повороты, тройники, заужения и расширение трубы, тоже увеличивают потерю напора.

Более детально потеря напора по длине трубопровода рассматривается в этой статье:

А теперь рассмотрим задачу из реального примера.

Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м. То есть труба относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м 3 /ч. Температура воды 16°С. Найти максимально возможный расход в конце трубы.

Сила тяжести

Гравитация — одна из четырех сил природы. Мощь гравитационной силы между двумя объектами зависит от массы этих объектов. Чем массивнее объекты, тем сильнее гравитационное притяжение.

Когда выливается вода из контейнера, гравитация Земли притягивает воду к земной поверхности. Можно наблюдать тот же самый эффект, если на разных высотах разместить два ведра воды и соединить их трубкой.

Достаточно задать ход жидкости в трубке из одного ведра в другой, после чего сработает сила гравитации, и процесс перелива продолжится самопроизвольно. Гравитация, приложенные силы и атмосферное давление являются статическими факторами, которые в равной степени относятся к жидкостям, находящимся в покое или в движении.

Силы инерции и трения являются динамическими факторами, которые действуют только на жидкости в движении. Математическая сумма силы тяжести, приложенной силы и атмосферного давления, представляет собой статическое давление, полученное в любой зоне жидкости и в любой момент времени.



Примеры расчетов


Чаще с помощью скорости рассчитывают расход воды или диаметр труб. Для этого используют формулу:

W= V×S, где W – расход, V – скорость, S – площадь сечения выбранных труб.

По одной из таблиц выбирается скорость движения воды. Если это пожарный водопровод, в нем данный параметр должен быть в пределах 3 м/с. Достаточно большое значение, но для водопровода этого типа величина усредненная, бывает и больше.

К примеру, надо рассчитать сечение трубы. Для этого дополнительно нужно определиться, сколько воды будет расходоваться через спринклеры или дренчеры противопожарной системы. Это также табличная величина, зависящая от защищаемой площади здания или сооружения. Пусть это будет пожарная система в одну струю, в которой обычно расход составляет 3,5 л/сек или 0,0035 м³/час.

Зная все требуемые параметры водопровода, можно рассчитать сечение труб, которые будут монтироваться в сеть:

S=W/V=0,0035:3 = 0,0012 м².

Зная сечение трубы, можно подсчитать ее диаметр. Формула площади такова: S=πD²/4, отсюда формула диаметра:

D=√4S/π=√(4×0,0012:3,14)=0,0038 м или 38 мм. Такого значения диаметра труб не существует, поэтому надо выбрать стандартное большее — 40 мм.

Это самый простой пример. В реальности большинство водопроводных систем – это сложные схемы, в которых присутствуют отводы, подсоединяемые участки, установленная запорная арматура и прочие препятствия, которые снижают быстроту движения воды в водопроводе. При этом во многих сетях установлены насосные станции, которые формируют производительность и напор. Нередко в систему устанавливаются насколько насосных агрегатов, которые работают попеременно: по два, по три, по одному, в разных последовательностях включения и отключения.

В таких случаях расчет проводят ступенчато, для каждого участка по отдельности. При этом обязательно учитываются дополнительные коэффициенты, которые нивелируют полученные значения, а также потери напора на фитингах и в местах установки запорной арматуры.


О работе с «микропотоками»

Если задача вообще не предполагает работы с потоками со скоростью более 1.5 м/c и речь идет о газообразной среде, то можно использовать датчики серии MFS02 (Micro Flow Sense). MFS02 имеет максимальную чувствительность (0,0003 м/с) и скорость срабатывания (время отклика менее 10 мс).
Структурно датчик MFS02 похож на FS2 и состоит из микронагревателя, пары датчиков температуры и дополнительного компенсирующего датчика. Однако MFS02 изготавливаются по другому технологическому процессу: в стеклокерамической подложке датчика выделяется зона, представляющая собой мембрану. Предполагается, что в поток погружается только мембрана, поэтому именно на ней располагаются компоненты для калориметрических измерений, а компенсирующий датчик температуры установлен вне мембраны.

Читайте также:
Регулировка давления в гидроаккумуляторе

Датчик MFS02 имеет размер всего 3.5 x 5.1 мм, а к контактным площадкам довольно сложно подпаяться, поэтому MFS02 также доступен в составе плат-расширений, предоставляющих доступ к выводам элемента.

Подходящая скорость жидкости, в зависимости от вида трубопровода

Прежде всего учитываются минимальные затраты, без которых невозможно перекачивать жидкость. Кроме того, обязательно рассматривается стоимость трубопровода.

При расчете, нужно всегда помнить об ограничениях скорости двигающейся среды. В некоторых случаях, размер магистрального трубопровода должен отвечать требованиям, заложенным в технологический процесс.

На габариты трубопровода влияют также возможные скачки давления.

Когда делаются предварительные расчеты, изменение давление в расчет не берется. За основу проектирования технологического трубопровода берется допустимая скорость.

Когда в проектируемом трубопроводе существуют изменения направления движения, поверхность трубы начинает испытывать большое давление, направленное перпендикулярно движению потока.

Такое увеличение связано с несколькими показателями:

  • Скорость жидкости;
  • Плотность;
  • Исходное давление (напор).

Причем скорость всегда находится в обратной пропорции к диаметру трубы. Именно поэтому для высокоскоростных жидкостей требуется правильный выбор конфигурации, грамотный подбор габаритов трубопровода.

К примеру, если перекачивается серная кислота, значение скорости ограничивается до величины, которая не станет причиной появления эрозия на стенках трубных колен. В результате структура трубы никогда не будет нарушена.

Закон Паскаля

Фундаментальная основа современной гидравлики сформировалась, когда Блезу Паскалю удалось обнаружить, что действие давления жидкости неизменно в любом направлении. Действие жидкостного давления направлено под прямым углом к площади поверхностей.

Если измерительное устройство (манометр) разместить под слоем жидкости на определенной глубине и направлять его чувствительный элемент в разные стороны, показания давления будут оставаться неизменными в любом положении манометра.

То есть давление жидкости никак не зависит от смены направления. Но давление жидкости на каждом уровне зависит от параметра глубины. Если измеритель давления перемещать ближе к поверхности жидкости, показания будут уменьшаться.

Соответственно, при погружении измеряемые показания будут увеличиваться. Причём в условиях удвоения глубины, параметр давления также удвоится.


Закон Паскаля наглядно демонстрирует действие давления воды в самых привычных условиях для современного быта Отсюда логичный вывод: давление жидкости следует рассматривать прямо пропорциональной величиной для параметра глубины. В качестве примера рассмотрим прямоугольный контейнер размерами 10х10х10 см., который заполнен водой на 10 см глубины, что по объёмной составляющей будет равняться 10 см3 жидкости.

Этот объём воды в 10 см3 весит 1 кг. Используя имеющуюся информацию и уравнение для расчёта, несложно вычислить давление на дне контейнера. Например: вес столба воды высотой 10 см и площадью поперечного сечения 1 см2 составляет 100 г (0,1 кг). Отсюда давление на 1 см2 площади:

P = F / S = 100 / 1 = 100 Па (0,00099 атмосферы)

Если глубина столба воды утроится, вес уже будет составлять 3 * 0,1 = 300 г (0,3 кг), и давление, соответственно увеличится втрое. Таким образом, давление на любой глубине жидкости равноценно весу столба жидкости на этой глубине, поделённому на площадь поперечного сечения столба.


Давление водяного столба: 1 — стенка контейнера для жидкости; 2 — давление столба жидкости на донную часть сосуда; 3 — давление на основание контейнера; А, С — области давления на боковины; В — прямой водяной столб; Н — высота столба жидкости Объем жидкости, создающей давление, называется гидравлический напор жидкости. Давление жидкости благодаря гидравлическому напору, также остаётся зависимым от плотности жидкости.

Об определении направления потока

Термоанемометрические расходомеры имеют некоторые очевидные ограничения. В частности, они не позволяют определить направление потока и не подходят для приложений, требующих высокой чувствительности датчика.
Калориметрические расходомеры, напротив, предназначены для относительно медленных потоков газа с переменным направлением. Калориметрический датчик состоит из трех элементов – микронагревателя и двух датчиков, измеряющих температуру до и после него. В отсутствии потока тепловое пятно, излучаемое нагревателем, неподвижно, поэтому справа и слева от нагревателя сплошная среда имеет одну и ту же температуру. При возникновении потока тепловое пятно «сдвигается» согласно направлению и скорости потока. Таким образом, при известных параметрах трубы и характеристиках среды скорость потока может быть измерена по разности показаний датчиков температуры.

Читайте также:
Поверхностный насос Вихрь: технические характеристики, правила монтажа и отзывы

При производстве колориметрического датчика на керамическую подложку также наносятся платиновые дорожки и соединения между ними — микронагреватель и два датчика температуры.

Поскольку при наличии потока нагревательный элемент охлаждается, а для измерений этот процесс уже не используется, на датчике расхода предусматривается дополнительный компенсационный датчик температуры.

По такому принципу построены датчики серии FS2. С их помощью можно определять как направление, так и скорость потока. В диапазоне от 0 до 2.5 м/c датчик имеет чувствительность 0.001 м/c.

Диапазон измерений калориметрических датчиков ограничивается самим принципом его работы – при определенной скорости потока тепловое пятно «сдвигается» слишком далеко и разность показателей правого и левого датчиков уже не позволяет судить о скорости потока.

Это досадное свойство калориметрических датчиков довольно просто обходится. Когда поток достигает определенной скорости, можно «переключиться» на работу в термоанемометрическом режиме — начать использовать пару нагреватель + компенсирующий датчик температуры по уже известному нам термоанемометрическому принципу.

При использовании комбинации двух способов измерения модуль величины скорости потока на большей части диапазона определяется квадратичной функцией от напряжения Uflow (нижний график), а направление потока – по напряжению с полномостовой схемы, состоящей из пары датчиков и микронагревателя.

Как рассчитать пропускную способность газовой трубы

Газ – это один из самых сложных материалов для транспортировки, в частности потому, что имеет свойство сжиматься и потому способен утекать через мельчайшие зазоры в трубах. К расчету пропускной способности газовых труб (как и к проектированию газовой системы в целом) предъявляют особые требования.

Формула расчета пропускной способности газовой трубы

Максимальная пропускная способность газопроводов определяется по формуле:

Qmax = 0.67 Ду2 * p

где p — равно рабочему давлению в системе газопровода + 0,10 мПа или абсолютному давлению газа;

Ду — условный проход трубы.

Существует сложная формула для расчета пропускной способности газовой трубы. При проведении предварительных расчетов, а также при расчетах бытового газопровода обычно не используется.

Qmax = 196,386 Ду2 * p/z*T

где z — коэффициент сжимаемости;

Т- температура перемещаемого газа, К;

Согласно этой формуле определяется прямая зависимость температуры перемещаемой среды от давления. Чем выше значение Т, тем больше газ расширяется и давит на стенки. Поэтому инженеры при расчетах крупных магистралей учитывают возможные погодные условия в местности, где проходит трубопровод. Если номинальное значение трубы DN будет меньше давления газа, образующегося при высоких температурах летом (например, при +38…+45 градусов Цельсия), тогда вероятно повреждение магистрали. Это влечет утечку ценного сырья, и создает вероятность взрыва участка трубы.

Таблица пропускных способностей газовых труб в зависимости от давления

Существует таблица расчетов пропускных способностей газопровода для часто применяемых диаметров и номинального рабочего давления труб. Для определения характеристики газовой магистрали нестандартных размеров и давления потребуются инженерные расчеты. Также на давление, скорость движения и объем газа влияет температура наружного воздуха.

Максимальная скорость (W) газа в таблице — 25 м/с, а z (коэффициент сжимаемости) равен 1. Температура (Т) равна 20 градусов по шкале Цельсия или 293 по шкале Кельвина.
Таблица 2. Пропускная способность газового трубопровода в зависимости от давления

Скорость воды в трубопроводе: факторы и расчеты

Диаметр трубопроводов, скорость течения и расход теплоносителя.

Данный материал предназначен понять, что такое диаметр, расход и скорость течения. И какие связи между ними. В других материалах будет подробный расчет диаметра для отопления.

Для того чтобы вычислить диаметр необходимо знать:

1. Расход теплоносителя (воды) в трубе.
2. Сопротивление движению теплоносителя (воды) в трубе определенной длины.

Вот необходимые формулы, которые нужно знать:

S-Площадь сечения м 2 внутреннего просвета трубы
π-3,14-константа – отношение длины окружности к ее диаметру.
r-Радиус окружности, равный половине диаметра, м
Q-расход воды м 3 /с
D-Внутренний диаметр трубы, м
V-скорость течения теплоносителя, м/с

Сопротивление движению теплоносителя.

Любой движущийся внутри трубы теплоноситель, стремиться к тому, чтобы прекратить свое движение. Та сила, которая приложена к тому, чтобы остановить движение теплоносителя – является силой сопротивления.

Это сопротивление, называют – потерей напора. То есть движущийся теплоноситель по трубе определенной длины теряет напор.

Напор измеряется в метрах или в давлениях (Па). Для удобства в расчетах необходимо использовать метры.

Для того, чтобы глубже понять смысл данного материла, рекомендую проследить за решением задачи.

В трубе с внутренним диаметром 12 мм течет вода, со скоростью 1м/с. Найти расход.

Решение: Необходимо воспользоваться вышеуказанными формулами:

Читайте также:
Насос для скважины Водолей: технические характеристики, установка, цена и отзывы
1. Находим сечение
2. Находим расход
D=12мм=0,012 м
п=3,14

S=3.14•0,012 2 /4=0,000113 м 2

Q=0,000113•1=0,000113 м 3 /с = 0,4 м 3 /ч.

Ответ: 0,4 м 3 /ч.

Имеется насос, создающий постоянный расход 40 литров в минуту. К насосу подключена труба протяженностью 1 метр. Найти внутренний диаметр трубы при скорости движения воды 6 м/с.

Q=40л/мин=0,000666666 м 3 /с

Из выше указанных формул получил такую формулу.

Ответ: 12мм

Каждый насос имеет вот такую расходно-сопротивляемую характеристику:

Это означает, что наш расход в конце трубы будет зависеть от потери напора, которое создается самой трубой.

Чем длиннее труба, тем больше потеря напора.
Чем меньше диаметр, тем больше потеря напора.
Чем выше скорость теплоносителя в трубе, тем больше потеря напора.
Углы, повороты, тройники, заужения и расширение трубы, тоже увеличивают потерю напора.

Более детально потеря напора по длине трубопровода рассматривается в этой статье:

А теперь рассмотрим задачу из реального примера.

Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м. То есть труба относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м 3 /ч. Температура воды 16°С. Найти максимально возможный расход в конце трубы.

D=100 мм = 0,1м
L=376м
Геометрическая высота=17м
Отводов 21 шт
Напор насоса= 0,5 МПа (50 метров водного столба)
Максимальный расход=90м 3 /ч
Температура воды 16°С.
Труба стальная железная

Найти максимальный расход = ?

Решение на видео:

Для решения необходимо знать график насосов: Зависимость расхода от напора.

В нашем случае будет такой график:

Смотрите, прерывистой линией по горизонту обозначил 17 метров и на пересечение по кривой получаю максимально возможный расход: Qmax.

По графику я могу смело утверждать, что на перепаде высоты, мы теряем примерно: 14 м 3 /час. (90-Qmax=14 м 3 /ч).

Ступенчатый расчет получается потому, что в формуле существует квадратичная особенность потерь напора в динамике (движение).

Поэтому решаем задачу ступенчато.

Поскольку мы имеем интервал расходов от 0 до 76 м 3 /час, то мне хочется проверить потерю напора при расходе равным: 45 м 3 /ч.

Находим скорость движения воды

Q=45 м 3 /ч = 0,0125 м 3 /сек.

V = (4•0,0125)/(3,14•0,1•0,1)=1,59 м/с

Находим число рейнольдса

ν=1,16•10 -6 =0,00000116. Взято из таблици. Для воды при температуре 16°С.

Δэ=0,1мм=0,0001м. Взято из таблицы, для стальной (железной) трубы.

Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.

У меня попадает на вторую область при условии

10•D/Δэ 0.25 =0,11•( 0,0001/0,1 + 68/137069) 0,25 =0,0216

Далее завершаем формулой:

h=λ•(L•V 2 )/(D•2•g)= 0,0216•(376•1,59•1,59)/(0,1•2•9,81)=10,46 м.

Как видите, потеря составляет 10 метров. Далее определяем Q1, смотри график:

Теперь делаем оригинальный расчет при расходе равный 64м 3 /час

Q=64 м 3 /ч = 0,018 м 3 /сек.

V = (4•0,018)/(3,14•0,1•0,1)=2,29 м/с

λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/197414) 0,25 =0,021

h=λ•(L•V 2 )/(D•2•g)= 0,021•(376•2,29 •2,29)/(0,1•2•9,81)=21,1 м.

Отмечаем на графике:

Qmax находится на пересечении кривой между Q1 и Q2 (Ровно середина кривой).

Ответ: Максимальный расход равен 54 м 3 /ч. Но это мы решили без сопротивления на поворотах.

Для проверки проверим:

Q=54 м 3 /ч = 0,015 м 3 /сек.

V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с

λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/164655) 0,25 =0,0213

h=λ•(L•V 2 )/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.

Итог: Мы попали на Нпот=14,89=15м.

А теперь посчитаем сопротивление на поворотах:

Формула по нахождению напора на местном гидравлическом сопротивление:

h-потеря напора здесь она измеряется в метрах.
ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с2

ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм. Для больших диаметров он уменьшается. Это связано с тем, что влияние скорости движения воды по отношению к повороту уменьшается.

Смотрел в разных книгах по местным сопротивлениям для поворота трубы и отводов. И приходил часто к расчетам, что один сильный резкий поворот равен коэффициенту единице. Резким поворотом считается, если радиус поворота по значению не превышает диаметр. Если радиус превышает диаметр в 2-3 раза, то значение коэффициента значительно уменьшается.

Скорость 1,91 м/с

h=ζ•(V 2 )/2•9,81=(1•1,91 2 )/( 2•9,81)=0,18 м.

Это значение умножаем на количество отводов и получаем 0,18•21=3,78 м.

Ответ: при скорости движения 1,91 м/с, получаем потерю напора 3,78 метров.

Давайте теперь решим целиком задачку с отводами.

При расходе 45 м 3 /час получили потерю напора по длине: 10,46 м. Смотри выше.

При этой скорости (2,29 м/с) находим сопротивление на поворотах:

h=ζ•(V 2 )/2•9,81=(1•2,29 2 )/(2•9,81)=0,27 м. умножаем на 21 = 5,67 м.

Складываем потери напора: 10,46+5,67=16,13м.

Отмечаем на графике:

Решаем тоже самое только для расхода в 55 м 3 /ч

Q=55 м 3 /ч = 0,015 м 3 /сек.

V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с

Читайте также:
Скважина на воду на даче: устройство, бурение, цена и принцип работы

λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/164655) 0,25 =0,0213

h=λ•(L•V 2 )/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.

h=ζ•(V 2 )/2•9,81=(1•1,91 2 )/( 2•9,81)=0,18 м. умножаем на 21 = 3,78 м.

Складываем потери: 14,89+3,78=18,67 м

Рисуем на графике:

Ответ: Максимальный расход=52 м 3 /час. Без отводов Qmax=54 м 3 /час.

В итоге, на размер диаметра влияют:

1. Сопротивление, создаваемое трубой с поворотами
2. Необходимый расход
3. Влияние насоса его расходно-напорной характеристикой

Если расход в конце трубы меньше, то необходимо: Либо увеличить диаметр, либо увеличить мощность насоса. Увеличивать мощность насоса не экономично.

Данная статья является частью системы: Конструктор водяного отопления

Пропускная способность трубы

Редакция E-metall Опубликовано 2021-01-06

Нормальная работа всех инженерных систем здания прежде всего зависит от точности проектирования. Диаметр трубы влияет на ее пропускную способность – объем, который может пропустить сечение в единицу времени. Эту величину не принято вычислять и указывать в литрах для каждого вида продукции, так как при расчетах необходимо учитывать множество факторов.

Если диаметр трубопровода слишком мал, увеличивается внутреннее давление. Это создает аварийную ситуацию: возможны разрывы, протечки, появление засоров может полностью перекрыть поток.

Выбор труб большого сечения решает все эти проблемы, но напор может оказаться недостаточным. Такая система не в состоянии обеспечивать подачу воды или газа в нормальном объеме.

Методы определения пропускной способности

При расчетах инженеры руководствуются строительными нормами СНиП 2.04.01- и СП 402.1325800.2018. Разработку проектов производят с учетом точек разбора и нормативного потребления ресурсов. Как рассчитать пропускную способность трубы самостоятельно? Используют несколько вариантов, но все они дают приблизительный результат:

  • С помощью таблиц;
  • Опираясь на гидравлические формулы;
  • Через онлайн-калькуляторы;
  • С помощью программных продуктов.

На пропускную способность участка трубы оказывают влияние следующие факторы:

  • Условный проход (Ду или DN);
  • Материал изготовления;
  • Количество колен, переходников, фитингов;
  • Число точек разбора.
  • Длина отрезка;
  • Мощность насосного оборудования или уклон;
  • Характеристики транспортируемой среды.

Условный проход – это средний внутренний диаметр. Понятие было введено для удобства подбора при стыковке элементов разных типоразмеров. Стальные изделия к концу эксплуатационного срока могут пропускать меньший объем воды из-за формирования отложений и ржавчины. От гладкости поверхности зависит сопротивление потоку, дополнительно оно создается в местах размещения арматуры. По правилам гидравлики пропускную способность рассчитывают в самом узком месте.

Расчет пропускной способности газовой трубы

Природный газ – особо опасная среда, поэтому проектирование разводок выполняют компании с лицензией, а работоспособность оборудования проверяет инспектор. Свойство газов сжиматься – усложняет вычисления. Кроме этого возможны утечки через микроскопические трещины и зазоры.

Пропускную способность газовой трубы определяют исходя из обеспечения бесперебойных поставок в часы максимального потребления и минимальными потерями напора между участками сети.

Кроме этого, характеристики строения должны соответствовать требованиям пожарной безопасности.

Упрощенная формула для бытовых газопроводов:

  • Ду или DN – условный проход;
  • Р – абсолютное давление газа, равное рабочему +0,10 мПа.

Для определения диаметра магистрального или распределительного газопровода применяют более сложную формулу:

  • Z – коэффициент сжимаемости;
  • t o – температура среды.

Например, в летнее время температура воздуха выше. Газ, находящийся в трубопроводе увеличивается в объеме. Если пропускная способность окажется ниже, возможны утечки и даже взрывы.

Таблица расчета газовой трубы

Pраб.(МПа) Пропускная способность трубопровода (м?/ч), при wгаза=25м/с;z=1;Т=20°С=293°К
DN 50 DN 80 DN 100 DN 150 DN 200 DN 300 DN 400 DN 500
0,3 670 1715 2680 6030 10720 24120 42880 67000
0,6 1170 3000 4690 10550 18760 42210 75040 117000
1,2 2175 5570 8710 19595 34840 78390 139360 217500
1,6 2845 7290 11390 25625 45560 102510 182240 284500
2,5 4355 11145 17420 39195 69680 156780 278720 435500
3,5 6030 15435 24120 54270 96480 217080 385920 603000
5,5 9380 24010 37520 84420 150080 337680 600320 938000
7,5 12730 32585 50920 114570 203680 458280 814720 1273000
10,0 16915 43305 67670 152255 270680 609030 108720 1691500

Расчет канализационной трубы

Системы канализации бывают напорные и безнапорные. В безнапорных вещества движутся за счет уклона элементов. В напорных сточные воды перемещаются благодаря действию насосных станций.

Стоки представляют собой разнородную массу. При малых скоростях твердые частицы выпадают на дно и образуют наносы. Для бесперебойной работы необходимо обеспечить скорость самоочищения, она определена для различных Ду.

Для вычисления размера сечения применяют формулу постоянного расхода жидкости:

  • q=a*v ( q ­– расход, a – площадь сечения потока, v – скорость)
  • v=C√R*i (С – коэффициент Шези, R – гидравлический радиус, i – уклон)
  • R = a/x (a – площадь сечения потока, x – смоченный периметр)

Коэффициент Шези обозначает потери, связанные с трением с учетом длины. Гидравлический радиус тоже введен для вычисления сопротивления, ведь чем шире русло реки, тем большая энергия трения возникает при движении потока. Смоченный периметр – это часть длины окружности, которая соприкасается с жидкостью.

Применение формул чрезвычайно сложно, поэтому для определения Ду внутренних сетей зданий, ливневок, стоков применяют готовые таблицы или программное обеспечение.

Расчет расхода сточных вод

Диаметр, мм Наполнение Принимаемый (оптимальный уклон) Скорость движения сточной воды в трубе, м/с Расход, л/сек
100 0,6 0,02 0,94 4,6
125 0,6 0,016 0,97 7,5
150 0,6 0,013 1,00 11,1
200 0,6 0,01 1,05 20,7
250 0,6 0,008 1,09 33,6
300 0,7 0,0067 1,18 62,1
350 0,7 0,0057 1,21 86,7
400 0,7 0,0050 1,23 115,9
450 0,7 0,0044 1,26 149,4
500 0,7 0,0040 1,28 187,9
600 0,7 0,0033 1,32 278,6
800 0,7 0,0025 1,38 520,0
1000 0,7 0,0020 1,43 842,0
1200 0,7 0,00176 1,48 1250,0

Расчет водопроводной трубы

Водопроводный сортамент применяют для ХВС, ГВС и отопления. Кроме этого, в каждом строении организуют большое число точек водоразбора, например, в среднестатистической квартире их минимум три.

К системе водоснабжения подключают:

  • ванные,
  • душевые кабины,
  • санузлы,
  • кухонные мойки и различные приборы (стиральные и посудомоечные машины, автополив в частных домах).

Иногда гидравлическая схема устроена так, что при работающем душе не хватает напора на кухне.

Принято считать, что скорость потока в водопроводе примерно равна 2 м/с, а за минуту из крана вытекает примерно 6 литров. Согласно СНиП 2.0401-85 допустимое давление холодной воды 0,3 – 6 бар, а горячей 0,3- 4,5 бар (под напором 1 бар вода может подняться на высоту 10 метров). Нормативы также обозначены в Постановлении Правительства № 354.

Владельцы частных домов вынуждены рассчитывать показатели индивидуально. Здесь необходимо учитывать заводские рекомендации для реле насосных установок. Величину 4 бар можно считать оптимальной для нужд жильцов и хозяйства, а фитинги — запорная арматура — способны служить достаточное время без срывов. Но такие технические возможности есть не у каждой системы.

Важным параметром является температура среды. Под действием тепла жидкости расширяются, следовательно, возрастает давление и трение. Дополнительное сопротивление создает каждый изгиб, фитинг, внутренняя поверхность по всей длине участка.

Гидравлический расчет включает в себя следующие характеристики:

  • Условный проход;
  • Нормативный расход;
  • Номинальное и допустимое избыточное давление;
  • Материал – падение напора на каждом участке;
  • Количество фасонных деталей;
  • Линейное и тепловое расширение;
  • Длина.

Для вычисления зависимостей между расходом и давлением потока жидкости применяются уравнения Бернули (динамическое) и сохранения расхода (кинематическое).

Пропускная способность водопроводной трубы по диаметру наиболее точно определяется по таблице Шевелевых. Производители предусматривают расчетное давление для каждого размера Ду, проводят гидравлические испытания на соответствие. Существует таблица расчетов по теплоте и теплоносителю.

Пропускная способность трубы в зависимости от теплоносителя и отдаваемой теплоты

Диаметр трубы, мм Пропускная способность
По теплоте По теплоносителю
Вода Пар Вода Пар
Гкал/ч т/ч
15 0,011 0,005 0,182 0,009
25 0,039 0,018 0,650 0,033
38 0,11 0,05 1,82 0,091
50 0,24 0,11 4,00 0,20
75 0,72 0,33 12,0 0,60
100 1,51 0,69 25,0 1,25
125 2,70 1,24 45,0 2,25
150 4,36 2,00 72,8 3,64
200 9,23 4,24 154 7,70
250 16,6 7,60 276 13,8
300 26,6 12,2 444 22,2
350 40,3 18,5 672 33,6
400 56,5 26,0 940 47,0
450 68,3 36,0 1310 65,5
500 103 47,4 1730 86,5
600 167 76,5 2780 139
700 250 115 4160 208
800 354 162 5900 295
900 633 291 10500 525
1000 1020 470 17100 855

Пропускная способность трубы в зависимости от давления теплоносителя

Расход Пропускная способность
Ду трубы 15 мм 20 мм 25 мм 32 мм 40 мм 50 мм 65 мм 80 мм 100 мм
Па/м — мбар/м меньше 0,15 м/с 0,15 м/с 0,3 м/с
90,0 — 0,900 173 403 745 1627 2488 4716 9612 14940 30240
92,5 — 0,925 176 407 756 1652 2524 4788 9756 15156 30672
95,0 — 0,950 176 414 767 1678 2560 4860 9900 15372 31104
97,5 — 0,975 180 421 778 1699 2596 4932 10044 15552 31500
100,0 — 1,000 184 425 788 1724 2632 5004 10152 15768 31932
120,0 — 1,200 202 472 871 1897 2898 5508 11196 17352 35100
140,0 — 1,400 220 511 943 2059 3143 5976 12132 18792 38160
160,0 — 1,600 234 547 1015 2210 3373 6408 12996 20160 40680
180,0 — 1,800 252 583 1080 2354 3589 6804 13824 21420 43200
200,0 — 2,000 266 619 1151 2486 3780 7200 14580 22644 45720
220,0 — 2,200 281 652 1202 2617 3996 7560 15336 23760 47880
240,0 — 2,400 288 680 1256 2740 4176 7920 16056 24876 50400
260,0 — 2,600 306 713 1310 2855 4356 8244 16740 25920 52200
280,0 — 2,800 317 742 1364 2970 4356 8566 17338 26928 54360
300,0 — 3,000 331 767 1415 3076 4680 8892 18000 27900 56160

Практически все водопроводы изготовлены из сталей (за исключением части внутренней разводки МКД). Для трубопроводов общего назначения с высокими механическими или корродирующими нагрузками используется чугун или нелегированные конструкционные стали.

Абсолютную шероховатость поверхностей обозначают знаком ∆ и вычисляют для разных сред после нескольких лет применения (отложения накипи, применение в насосно-компрессорных и системах отопления).

Так как необходим учет большого числа факторов, инженеры выполняют проектирование в специализированных программах. Применение формул требует знаний многих параметров. Это не всегда возможно для специалистов, поэтому в нормативных документах предусматриваются таблицы.

Пропускная способность трубопровода.

Такая характеристика как пропускная способность трубопровода зависит от нескольких факторов. Прежде всего, это диаметр трубы, а также тип жидкости, и другие показатели.

Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода.

При расчете любых систем, основанных на циркуляции жидкости по трубам, возникает необходимость точного определения пропускной способности труб. Это метрическая величина, которая характеризует количество жидкости, протекающее по трубам за определенный промежуток времени. Данный показатель напрямую связан с материалом, из которого изготовлены трубы.

Если взять, к примеру, трубы из пластика, то они отличаются практически одинаковой пропускной способностью на протяжении всего срока эксплуатации. Пластик, в отличие от металла, не склонен к возникновению коррозии, поэтому постепенного нарастания отложений в нем не наблюдается.

Что касается труб из металла, то их пропускная способность уменьшается год за годом. Из-за появления ржавчины происходит отслойка материала внутри труб. Это приводит к шероховатости поверхности и образованию еще большего налета. Особенно быстро этот процесс происходит в трубах с горячей водой.

Далее приведена таблица приближенных значений которая создана для облегчения определения пропускной способности труб внутриквартирной разводки. В данной таблице не учтено уменьшение пропускной способности за счет появления осадочных наростов внутри трубы.

Таблица пропускной способности труб для жидкостей, газа, водяного пара.

Вид жидкости

Скорость (м/сек)

Вода городского водопровода

Вода трубопроводной магистрали

Вода системы центрального отопления

Вода напорной системы в линии трубопровода

Масло линии трубопровода

Масло в напорной системе линии трубопровода

Пар в отопительной системе

Пар системы центрального трубопровода

Пар в отопительной системе с высокой температурой

Воздух и газ в центральной системе трубопровода

Чаще всего, в качестве теплоносителя используется обычная вода. От ее качества зависит скорость уменьшения пропускной способности в трубах. Чем выше качество теплоносителя, тем дольше прослужит трубопровод из любого материала (сталь чугун, медь или пластик).

Расчет пропускной способности труб.

Для точных и профессиональных расчетов необходимо использовать следующие показатели:

  • Материал, из которого изготовлены трубы и другие элементы системы;
  • Длина трубопровода
  • Количество точек водопотребления (для системы подачи воды)

Наиболее популярные способы расчета:

1. Формула. Достаточно сложная формула, которая понятна лишь профессионалам, учитывает сразу несколько значений. Основные параметры, которые принимаются во внимание – материал труб (шероховатость поверхности) и их уклон.

2. Таблица. Это более простой способ, по которому каждый желающий может определить пропускную способность трубопровода. Примером может послужить инженерная таблица Ф. Шевелева, по которой можно узнать пропускную способность, исходя из материала трубы.

3. Компьютерная программа. Одну из таких программ легко можно найти и скачать в сети Интернет. Она разработана специально для того, чтоб определить пропускную способность для труб любого контура. Для того что узнать значение, необходимо ввести в программу исходные данные, такие как материал, длина труб, качество теплоносителя и т.д.

Следует сказать, что последний способ, хоть и является самым точным, не подходит для расчетов простых бытовых систем. Он достаточно сложен, и требует знания значений самых различных показателей. Для расчета простой системы в частном доме лучше воспользоваться таблицами.

Пример расчета пропускной способности трубопровода.

Длина трубопровода – важный показатель при расчете пропускной способности Протяженность магистрали оказывает существенное влияние на показатели пропускной способности. Чем большее расстояние проходит вода, тем меньшее давление она создает в трубах, а значит, скорость потока уменьшается.

Приводим несколько примеров. Опираясь на таблицы, разработанные инженерами для этих целей.

Пропускная способность труб:

  • 0,182 т/ч при диаметре 15 мм
  • 0,65 т/ч с диаметром трубы 25 мм
  • 4 т/ч при диаметре 50 мм

Как можно увидеть из приведенных примеров, больший диаметр увеличивает скорость потока. Если диаметр увеличить в 2 раза, то пропускная способность тоже возрастет. Эту зависимость обязательно учитывают при монтаже любой жидкостной системы, будь то водопровод, водоотведение или теплоснабжение. Особенно это касается отопительных систем, так как в большинстве случаев они являются замкнутыми, и от равномерной циркуляции жидкости зависит теплоснабжение в здании.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: