Расчет потребляемой мощности системы отопления
Эффективность работы отопительного оборудования напрямую связана с показателем тепловой мощности. От нее зависит комфортность и уют в помещении, обогреваемом посредством газа, дров или электричества. Поэтому пользователю важно знать, что собой представляет эта физическая величина и как она рассчитывается в каждом конкретном случае.
- Определение понятия тепловой мощности
- Необходимые характеристики
- Факторы, влияющие на потребность в тепле
- Для прибора (батареи отопления)
- Зачем нужен расчет мощностного показателя
- Расчет тепловой мощности
- Более точный тепловой расчет
Определение понятия тепловой мощности
Тепловая мощность оборудования напрямую зависит от количества потребляемой энергии котлом
Под мощностью тепловыделения понимается количество теплоты, образующееся при преобразовании исходного носителя в энергию обогрева. Этот показатель отличен по величине для разных видов энергоносителей и рассчитывается для каждого из них индивидуально. Для газовых котлов он зависит от объема природного или сжиженного газа, подводимого к горелке в единицу времени.
При рассмотрении электрических аналогов этот параметр напрямую связан с мощностью электроэнергии, потребляемой агрегатом от сети 220 или 380 Вольт и его тепловым КПД. Соотношение тепловых и электрических мощностей задается специальными формулами, переводящими одно значение в другое.
Необходимые характеристики
Главным узлом в отопительном котле является теплообменник
Расчет тепловой мощности очень важен, так как его результаты необходимы для определения параметров выбираемого образца отопительного оборудования. К последним традиционно относятся:
- электрическая мощность агрегата для энергозависимых моделей;
- эффективность преобразования (или КПД котла);
- производительность, определяемая как количество тепла, формируемое устройством в единицу времени.
Модели котлов, подключаемых к электросети, относятся к оборудованию с потребляемой мощностью системы отопления, приводимой к количеству сжигаемого твердого или газообразного топлива. Для независимых от электричества образов этот параметр определяется напрямую – без перерасчета на затраченную электроэнергию.
Эффективность работы любого отопительного агрегата в значительной мере зависит от правильности выбора узла, обеспечивающего преобразование тепловой энергии (теплообменника). Грамотное решение этого вопроса позволяет получить требуемую теплопроизводительность и комфортно чувствовать себя в доме даже в самые морозные дни.
Избытки по тепловой мощности нежелательны, поскольку в этом случае часть расходуемых средств тратится впустую.
Факторы, влияющие на потребность в тепле
Тепловая мощность зависит от площади помещения, климата региона, степени утепления здания
К основным факторам, определяющим потребность в тепловой энергии для помещения, относят:
- полный объем нагреваемых пространств;
- тип и качество утеплительного материала;
- климатическая зона, в которой располагается здание.
От объема помещения зависит количество воздушного пространства, нуждающегося в обогреве. Чем объемнее отапливаемое помещение, тем больше тепла потребуется для поддержания нужного микроклимата. При одинаковой высоте потолков (порядка 2,5 метров) обычно применяется упрощенный расчет, при котором за основу берется площадь комнаты.
О качестве утепления судят по способам теплоизоляции стен, а также по площади и комплекту окон и дверей. Учитывается также вид остекления – простой и тройной стеклопакет различны по тепловым потерям. Влияние климатического фактора сказывается при прочих равных условиях и учитывается как разность температур на улице и в комнате, где установлен котел.
Для прибора (батареи отопления)
Степень теплопроводности металлов — из некоторых изготавливают радиаторы
При рассмотрении факторов, влияющих на мощность нагрева радиаторов отопления, выделяются три основных:
- показатель, соответствующий разнице нагрева теплоносителя и окружающей воздушной среды – с его повышением увеличивается тепловая мощность;
- площадь поверхности, отдающей тепло;
- теплопроводность используемого материала.
В этом случае наблюдается та же линейная зависимость: с увеличением поверхности батареи возрастает и величина тепловой отдачи. По этой причине многие современные отопительные радиаторы дополняются специальными алюминиевыми ребрами, повышающими общую теплоотдачу.
Зачем нужен расчет мощностного показателя
Мощность котла выбирают по предполагаемому количеству приборов, которые придется обслуживать
Потребность в определении мощности объясняется тем, что основные характеристики котла зависят от следующих факторов:
- особенности конструкции и назначение отапливаемого объекта;
- размеры и форма каждого помещения;
- общее число жильцов;
- месторасположение на карте страны.
Расчетная мощность теплопередачи используется для определения параметров котельного оборудования, планируемого к установке именно в этом помещении. Будущий котел должен обладать производительностью, достаточной для его обогрева даже в самые холодные зимние дни. Также важно предусмотреть возможность согласованного подключения агрегата к магистральному трубопроводу. Проведенные расчеты помогут определиться с его длиной и типоразмером труб, а также с типом радиаторов и параметрами циркуляционного насоса.
Расчет тепловой мощности
Для оценки тепловой энергии существует формула определения мощности через количество теплоты: N = Q/Δ t, где Q – это количество теплоты, выраженное в джоулях, а Δ t – время выделения энергии в секундах.
При оценочных расчетах также используется специальный коэффициент (КПД), указывающий на объем израсходованного тепла. Он находится как отношение полезной энергии к мощности тепловых потерь и выражается в процентах.
Объем затраченной энергии для помещений зависит от их строительных особенностей. Тот же показатель для батарей определяется используемыми при их изготовлении материалами и особенностями конструкции.
Более точный тепловой расчет
Грамотный выбор нагревательного оборудования возможен лишь после ознакомления с порядком расчета тепловой мощности, требуемой в каждом конкретном случае. Формула, используемая для его точного определения, выглядит так: P=V∆TK= ккал/час:
- V – объем обогреваемого помещения, измеряемый в метрах кубических.
- ∆Т – разница между температурой воздуха вне и внутри помещения.
- К – коэффициент потерь тепла.
Последняя величина зависит от материала стен. На основании проведенных специалистами измерений для неутепленной деревянной конструкции она составляет 3,0-4,0. Точные значения К для различных вариантов утепления приведены ниже:
- Для зданий из одинарной кирпичной кладки и с упрощенными конструкциями окон и крыши (так называемая «простая» теплоизоляция) К=2,0-2,9.
- Утепление среднего качества (К=1,0-1,9). Это типовая конструкция, под которой понимается двойная кладка, крыша с обычной кровлей, ограниченное количество окон.
- Высококачественное утепление (К=0,6-0,9), предполагающее кирпичные стены с усиленной теплоизоляцией, малое число окон со сдвоенными рамами, прочное основание пола и крышу с надежными теплоизоляторами.
В качестве примера будет рассмотрен точный расчет мощности для нагреваемого помещения объемом 5 х 16 х 2,5 = 200 метров кубических. ∆Т определяется как разница показателя снаружи -20 °С и внутри помещения +25 °С. Принимается вариант со средней удельной теплоизоляцией (К=1-1,9). По усредненным условиям эксплуатации берем 1,7. Рассчитываем: 200 х 45 х 1,7 = 15 300 ккалчас. Исходя из того, что 1 кВт = 860 ккалчас, в итоге имеем: 15 300860 = 17,8 кВт.
Тепловая мощность — формула расчета и сферы применения
С теплотехническими расчётами приходится сталкиваться владельцам частных домов, квартир или любых других объектов. Это основа основ проектирования зданий.
Понять суть этих расчётов в официальных бумагах, не так сложно, как кажется.
Для себя также можно научиться выполнять вычисления, чтобы решить, какой утеплитель применять, какой толщины он должен быть, какой мощности приобретать котёл и достаточно ли имеющихся радиаторов на данную площадь.
Ответы на эти и многие другие вопросы можно найти, если понять, что такое тепловая мощность. Формула, определение и сферы применения – читайте в статье.
Что такое тепловой расчет?
Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.
Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:
- Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
- Сколько человек будет «обитать» в здании.
- Важная деталь — это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
- Какова продолжительность отопительного сезона, климатические характеристики региона.
- По СНиПам определяют нормы температур, которые должны быть в помещениях.
- Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.
Для чего нужен тепловой расчет?
Как умудрялись обходиться без тепловых расчётов строители прошлого?
Сохранившиеся купеческие дома показывают, что всё делалось просто с запасом: окна поменьше, стены — потолще. Получалось тепло, но экономически не выгодно.
Теплотехнический расчёт позволяет строить наиболее оптимально. Материалов берётся ни больше — ни меньше, а ровно столько, сколько нужно. Сокращаются габариты строения и расходы на его возведение.
Вычисление точки росы позволяет строить так, чтобы материалы не портились как можно дольше.
Для определения необходимой мощности котла также не обойтись без расчётов. Суммарная мощность его складывается из затрат энергии на обогрев комнат, нагрев горячей воды для хозяйственных нужд, и способности перекрывать теплопотери от вентиляции и кондиционирования. Прибавляется запас мощности, на время пиковых холодов.
При газификации объекта требуется согласование со службами. Рассчитывается годовой расход газа на отопление и общая мощность тепловых источников в гигакалориях.
Нужны расчёты при подборе элементов отопительной системы. Обсчитывается система труб и радиаторов – можно узнать, какова должна быть их протяжённость, площадь поверхности. Учитывается потеря мощности при поворотах трубопровода, на стыках и прохождении арматуры.
При расчетах затрат тепловой энергии могут пригодиться знания, как перевести Гкал в Квт и обратно. В следующей статье подробно рассмотрена эта тема с примерами расчета.
Полный расчет теплого водяного пола приведен в этом примере.
Знаете ли вы, что количество секций радиаторов отопления не берется «с потолка»? Слишком малое их количество приведет к тому, что в доме будет холодно, а чрезмерно больше создаст жару и приведет к чрезмерной сухости воздуха. По ссылке https://microklimat.pro/sistemy-otopleniya/raschet-sistem-otopleniya/kolichestva-sekcij-radiatorov.html приведены примеры правильного расчета радиаторов.
Расчет тепловой мощности: формула
Рассмотрим формулу и приведем примеры, как произвести расчет для зданий с разным коэффициентом рассеивания.
Vx(дельта)TxK= ккал/ч (тепловая мощность), где:
- Первый показатель «V» – объем рассчитываемого помещения;
- Дельта «Т» — разница температур – это та величина, которая показывает насколько градусов внутри помещения теплее, чем снаружи;
- «К» — коэффициент рассеивания (его еще называют «коэффициент пропускания тепла»). Величина берется из таблицы. Обычно цифра колеблется от 4 до 0,6.
Примерные величины коэффициента рассеивания для упрощенного расчёта
- Если это неутепленный металлопрофиль или доска то «К» будет = 3 – 4 единицы.
- Одинарная кирпичная кладка и минимальное утепление – «К» = от 2 до 3-ёх.
- Стена в два кирпича, стандартное перекрытие, окна и
- двери – «К» = от 1 до 2.
- Самый теплый вариант. Стеклопакеты, кирпичные стены с двойным утеплителем и т. п. – «К» = 0,6 – 0,9.
Пример расчета тепловой мощности
Возьмем некое помещение 80 м 2 с высотой потолков 2,5 м и посчитаем, какой мощности котел нам потребуется для его отопления.
Вначале высчитываем кубатуру: 80 х 2,5 = 200 м 3 . Дом у нас утеплен, но недостаточно – коэффициент рассеивания 1,2.
Морозы бывают до -40 °C, а в помещении хочется иметь комфортные +22 градуса, разница температур (дельта «Т») получается 62 °C.
Подставляем в формулу мощности тепловых потерь цифры и перемножаем:
200 х 62 х 1,2 = 14880 ккал/ч.
Полученные килокалории переводим в киловатты, пользуясь конвертером:
- 1 кВт = 860 ккал;
- 14880 ккал = 17302,3 Вт.
Округляем в большую сторону с запасом, и понимаем, что в самый сильный мороз -40 градусов нам потребуется 18 кВт энергии в час.
Можем посчитать теплопотери в Вт на каждый м 2 стен и потолка. Высота потолков известна 2,5 м. Дом 80 м 2 – это может быть 8 х 10 м.
Умножаем периметр дома на высоту стен:
(8 + 10) х 2 х 2,5 = 90 м 2 поверхности стены + 80 м 2 потолок = 170 м 2 поверхности, контактирующей с холодом. Теплопотери, высчитанные нами выше, составили 18 кВт/ч, делим поверхность дома на расчетную израсходованную энергию получаем, что 1 м 2 теряет примерно 0,1 кВт или 100 Вт ежечасно при температуре на улице -40 °C, а в помещении +22 °С.
Эти данные могут стать основой для расчёта требуемой толщины утеплителя на стены.
Приведем другой пример расчета, он в некоторых моментах сложнее, но более точный.
Формула:
Q = S x (дельта)T / R:
- Q– искомая величина теплопотерь дома в Вт;
- S– площадь охлаждающих поверхностей в м 2 ;
- T– разница температур в градусах Цельсия;
- R– тепловое сопротивление материала (м 2 х К/Вт) (Метры квадратные умноженные на Кельвин и делёный на Ватт).
Итак, чтобы найти «Q» того же дома, что и в примере выше, подсчитаем площадь его поверхностей «S» (пол и окна считать не будем).
- «S» в нашем случае = 170 м 2 , из них 80 м 2 потолок и 90 м 2 — стены;
- T = 62 °С;
- R– тепловое сопротивление.
Ищем «R» по таблице тепловых сопротивлений или по формуле. Формула для расчета по коэффициенту теплопроводности такая:
R= H/ К.Т. (Н – толщина материала в метрах, К.Т. – коэффициент теплопроводности).
В этом случае, дом у нас имеет стены в два кирпича обшитые пенопластом толщиной 10 см. Потолок засыпан опилками толщиной 30 см.
Отопительную систему частного дома нужно устраивать с учетом экономии средств на энергоносители. Расчет системы отопления частного дома, а также рекомендации по выбору котлов и радиаторов — читайте внимательно.
Чем и как утеплить деревянный дом изнутри, вы узнаете, прочитав эту информацию. Выбор утеплителя и технология утепления.
Из таблицы коэффициентов теплопроводности (измеряется Вт / (м 2 х К) Ватт делёный на произведение метра квадратного на Кельвин). Находим значения для каждого материала, они будут:
- кирпич — 0,67;
- пенопласт – 0,037;
- опилки – 0,065.
- R (потолка 30 см толщиной) = 0,3 / 0,065 = 4,6 (м 2 х К) / Вт;
- R (кирпичной стены 50 см) = 0,5 / 0,67 = 0,7 (м 2 х К) / Вт;
- R (пенопласт 10 см) = 0,1 / 0,037 = 2,7 (м 2 х К) / Вт;
- R (стен) = R(кирпич) + R(пенопласт) = 0,7 + 2,7 = 3,4 (м 2 х К) / Вт.
Теперь можем приступить к расчету теплопотерь «Q»:
- Q для потолка = 80 х 62 / 4,6 = 1078,2 Вт.
- Q стен = 90 х 62 / 3,4 = 1641,1 Вт.
- Остается сложить 1078,2 + 1641,1 и перевести в кВт, получается (если сразу округлить) 2,7 кВт энергии за 1 час.
Всё дело в степени утомлённости домов (хотя, конечно, данные могли быть и иными, если бы мы рассчитывали пол и окна).
Заключение
Приведённые формулы и примеры показываю, что при теплотехнических расчётах очень важно учитывать как можно больше факторов, влияющих на теплопотери. Сюда входит и вентиляция, и площадь окон, степень их утомлённости и т. д.
А подход, когда на 10 м 2 дома берётся 1 кВт мощности котла – слишком приблизительный, чтобы всерьёз опираться на него.
Видео на тему
Тепловая мощность: эффективность нагревателей и определение, расчёт баланса отопления и формулы, рекомендации
Тепловая мощность и суммарные потери теплоэнергии
Для создания комфорта в жилых и производственных помещениях выполняют составление теплового баланса и определяют коэффициент полезного действия (КПД) отопителей. Во всех расчётах применяется энергетическая характеристика, позволяющая связывать нагрузки источников обогрева с расходными показателями потребителей — тепловая мощность. Вычисление физической величины производится по формулам.
Для вычисления тепловой мощности используются специальные формулы
Эффективность нагревателей
Мощность — это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.
Для сопоставления энергий различного рода введена формула тепловой мощности: N = Q / Δ t, где:
- Q — количество теплоты в джоулях;
- Δ t — интервал времени выделения энергии в секундах;
- размерность полученной величины Дж / с = Вт.
В этом видео вы узнаете, как рассчитать количество теплоты:
Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла — КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах. По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения. Если оценивать чайник как нагреватель воды, его эффективность составит 90%, а при использовании его в качестве отопителя комнаты коэффициент возрастает до 99%.
Объяснение этому простое: из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = λ × S Δ T / h. Здесь λ – коэффициент теплопроводности, Вт/(м × К); S — площадь участка теплообмена, м²; Δ T — перепад температур на контролируемой поверхности, град. С; h — толщина изолирующего слоя, м.
Из формулы понятно, что для повышения мощности надо увеличить количество радиаторов отопления и площадь теплоотдачи. Уменьшив же поверхность контакта с внешней средой, минимизируют потери температуры в помещении. Чем массивнее стена здания, тем меньше будет утечка тепла.
Факторы
Для помещения
- Что влияет на потребность квартиры, комнаты или дома в тепле?
При расчетах учитываются:
- Объем. От него зависит количество воздуха, нуждающегося в нагреве;
Примерно одинаковая высота потолков (около 2,5 метров) в большинстве домов поздней советской постройки породила упрощенную систему расчета — по площади помещения.
- Качество утепления. Оно зависит от теплоизоляции стен, площади и количества дверей и окон, а также от структуры остекления окон. Скажем, одинарное остекление и тройной стеклопакет будут сильно различаться по количеству теплопотерь;
- Климатическая зона. При неизменных качестве утепления и объеме помещения разность температур между улицей и комнатой будет линейно связана с количеством теряющегося через стены и перекрытия тепла. При неизменных +20 в доме потребность дома в тепле в Ялте при температуре 0С и в Якутске при -40 будет различаться ровно втрое.
Для прибора
- Чем определяется тепловая мощность радиаторов отопления?
Здесь действует три фактора:
- Дельта температур — перепад между теплоносителем и окружающей средой. Чем он больше, тем выше мощность;
- Площадь поверхности. И здесь тоже наблюдается линейная зависимость между параметрами: чем больше площадь при неизменной температуре, тем больше тепла она отдает окружающей среде за счет прямого контакта с воздухом и инфракрасного излучения;
Именно поэтому алюминиевые, чугунные и биметаллические тепловые радиаторы отопления , а также все виды конвекторов снабжаются оребрением. Оно увеличивает мощность прибора при неизменном количестве протекающего через него теплоносителя.
- Теплопроводность материала прибора. Оно играет особенно важную роль при большой площади оребрения: чем выше теплопроводность, тем более высокую температуру будут иметь края ребер, тем сильнее они нагреют контактирующий с ними воздух.
Баланс отопления помещений
Подготовка проекта любого объекта начинается с теплотехнического расчёта, призванного решить задачу обеспечения сооружения отоплением с учётом потерь из каждого помещения. Сведение баланса помогает узнать, какая часть тепла сохраняется в стенах здания, сколько уходит наружу, объём потребной выработки энергии для обеспечения комфортного климата в комнатах.
Определение тепловой мощности необходимо для решения следующих вопросов:
- высчитать нагрузку отопительного котла, которая обеспечит обогрев, горячее водоснабжение, кондиционирование воздуха и функционирование системы проветривания;
- согласовать газификацию здания и получить технические условия на подключение к распределительной сети. Для этого потребуются объёмы годового расхода горючего и потребность в мощности (Гкал/час) тепловых источников;
- выбрать оборудование, необходимое для отопления помещений.
Не забываем про соответствующую формулу
Из закона сохранения энергии следует, что в ограниченном пространстве с постоянным температурным режимом должен соблюдаться тепловой баланс: Q поступлений — Q потерь = 0 или Q избыточное = 0, или Σ Q = 0. Постоянный микроклимат поддерживается на одном уровне в течение отопительного периода в зданиях социально значимых объектов: жилых, детских и лечебных учреждениях, а также на производствах с непрерывным режимом работы. Если потери тепла превышают поступление, требуется отапливать помещения.
Технический расчёт помогает оптимизировать расход материалов при строительстве, снизить затраты на возведение зданий. Определяется суммарная тепловая мощность котла сложением энергии на отопление квартир, нагрев горячей воды, компенсацию потерь вентиляции и кондиционирования, резерв на пиковые холода.
Расчет в Excel прикладной задачи.
В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…
Условия задачи:
В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)
Расчет выполним в программе MS Excel или в программе OOo Calc .
С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге«.
Исходные данные:
1. Названия веществ пишем:
в ячейку D3: Сталь
в ячейку E3: Лед
в ячейку F3: Лед/вода
в ячейку G3: Вода
Тепловая мощность – формула расчета и сферы применения
С теплотехническими расчётами приходится сталкиваться владельцам частных домов, квартир или любых других объектов. Это основа основ проектирования зданий.
Понять суть этих расчётов в официальных бумагах, не так сложно, как кажется.
Для себя также можно научиться выполнять вычисления, чтобы решить, какой утеплитель применять, какой толщины он должен быть, какой мощности приобретать котёл и достаточно ли имеющихся радиаторов на данную площадь.
Ответы на эти и многие другие вопросы можно найти, если понять, что такое тепловая мощность. Формула, определение и сферы применения – читайте в статье.
Что такое тепловой расчет?
Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.
Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:
- Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
- Сколько человек будет «обитать» в здании.
- Важная деталь – это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
- Какова продолжительность отопительного сезона, климатические характеристики региона.
- По СНиПам определяют нормы температур, которые должны быть в помещениях.
- Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.
Теплопотери частного дома
В любом доме, а в частном, в особенности, существует понятие «теплопотери». Это количество тепла, которое дом отдает улице в заданную временную единицу, зависящее от разницы температуры внутри и вне дома. Поэтому теплопотери в разных географических зонах значительно отличаются – в Сочи разница температур гораздо меньше, нежели в Мурманске.
Почему же желанное тепло покидает жилое помещение? Очевидно, что щели есть везде, даже если их не заметно. Основная часть теплопотерь приходится на чердак и крышу здания, чуть меньше – на места стыков стен, пола и потолка. Натяжные потолки Алматы сегодня — самое выгодное и красивое решение.
Кому хочется обогревать улицу и терять тепло? Люди всегда стремятся сократить расходы, в том числе и на отопление. Поэтому и утепляют свое жилье. Но делать это надо грамотно. Выяснив прежде всего основные источники теплопотерь именно вашего дома.
Это можно осуществить при помощи тепловизора.
Расчет тепловой мощности: формула
Рассмотрим формулу и приведем примеры, как произвести расчет для зданий с разным коэффициентом рассеивания.
Vx(дельта)TxK= ккал/ч (тепловая мощность), где:
- Первый показатель «V» – объем рассчитываемого помещения;
- Дельта «Т» – разница температур – это та величина, которая показывает насколько градусов внутри помещения теплее, чем снаружи;
- «К» – коэффициент рассеивания (его еще называют «коэффициент пропускания тепла»). Величина берется из таблицы. Обычно цифра колеблется от 4 до 0,6.
Примерные величины коэффициента рассеивания для упрощенного расчёта
- Если это неутепленный металлопрофиль или доска то «К» будет = 3 – 4 единицы.
- Одинарная кирпичная кладка и минимальное утепление – «К» = от 2 до 3-ёх.
- Стена в два кирпича, стандартное перекрытие, окна и
- двери – «К» = от 1 до 2.
- Самый теплый вариант. Стеклопакеты, кирпичные стены с двойным утеплителем и т. п. – «К» = 0,6 – 0,9.
Главные формулы теплопередачи.
Формулы очень просты.
Количество теплоты Q в Дж рассчитывается по формулам:
1. Со стороны потребления тепла, то есть со стороны нагрузки:
1.1. При нагревании (охлаждении):
m – масса вещества в кг
с – удельная теплоемкость вещества в Дж/(кг*К)
1.2. При плавлении (замерзании):
λ – удельная теплота плавления и кристаллизации вещества в Дж/кг
1.3. При кипении, испарении (конденсации):
r – удельная теплота газообразования и конденсации вещества в Дж/кг
2. Со стороны производства тепла, то есть со стороны источника:
2.1. При сгорании топлива:
q – удельная теплота сгорания топлива в Дж/кг
2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):
I – действующее значение тока в А
U – действующее значение напряжения в В
R – сопротивление нагрузки в Ом
Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности ( c, λ , r , q ) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).
Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:
Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.
Пример расчета тепловой мощности
Возьмем некое помещение 80 м 2 с высотой потолков 2,5 м и посчитаем, какой мощности котел нам потребуется для его отопления.
Вначале высчитываем кубатуру: 80 х 2,5 = 200 м 3 . Дом у нас утеплен, но недостаточно – коэффициент рассеивания 1,2.
Морозы бывают до -40 °C, а в помещении хочется иметь комфортные +22 градуса, разница температур (дельта «Т») получается 62 °C.
Подставляем в формулу мощности тепловых потерь цифры и перемножаем:
200 х 62 х 1,2 = 14880 ккал/ч.
Полученные килокалории переводим в киловатты, пользуясь конвертером:
- 1 кВт = 860 ккал;
- 14880 ккал = 17302,3 Вт.
Округляем в большую сторону с запасом, и понимаем, что в самый сильный мороз -40 градусов нам потребуется 18 кВт энергии в час.
О тепловой энергии простым языком!
Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва.
. энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.
Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.
Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.
Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С. Какая нужна мощность источника тепла, чтобы сделать это за 1 час. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!
Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!
Количество теплоты при различных физических процессах.
Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.
Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q , подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.
1. Твердое тело, имеющее температуру T1 , нагреваем до температуры Tпл , затрачивая на этот процесс количество теплоты равное Q1 .
2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2 — Q1 .
3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп , затрачивая на это количество теплоты равное Q3 – Q2 .
4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4 – Q3 .
5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2 . При этом затраты количества теплоты составят Q5 – Q4 . (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)
Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5 , переводя вещество через три агрегатных состояния.
Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5 , пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до температуры Т1 . Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.
Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.
Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.
Главные формулы теплопередачи.
Формулы очень просты.
Количество теплоты Q в Дж рассчитывается по формулам:
1. Со стороны потребления тепла, то есть со стороны нагрузки:
1.1. При нагревании (охлаждении):
Q = m * c *( Т2 – Т1 )
m – масса вещества в кг
с – удельная теплоемкость вещества в Дж/(кг*К)
1.2. При плавлении (замерзании):
Q = m * λ
λ – удельная теплота плавления и кристаллизации вещества в Дж/кг
1.3. При кипении, испарении (конденсации):
Q = m * r
r – удельная теплота газообразования и конденсации вещества в Дж/кг
2. Со стороны производства тепла, то есть со стороны источника:
2.1. При сгорании топлива:
Q = m * q
q – удельная теплота сгорания топлива в Дж/кг
2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):
Q = t * I * U = t * R * I ^2=( t / R ) * U ^2
t – время в с
I – действующее значение тока в А
U – действующее значение напряжения в В
R – сопротивление нагрузки в Ом
Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности ( c , λ , r , q ) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).
Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:
Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.
Расчет в Excel прикладной задачи.
В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…
Условия задачи:
В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)
Расчет выполним в программе MS Excel или в программе OOo Calc.
С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге».
Исходные данные:
1. Названия веществ пишем:
в ячейку D3: Сталь
в ячейку E3: Лед
в ячейку F3: Лед/вода
в ячейку G3: Вода
в ячейку G3: Воздух
2. Названия процессов заносим:
в ячейки D4, E4, G4, G4: нагрев
в ячейку F4: таяние
3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем для стали, льда, воды и воздуха соответственно
в ячейку D5: 460
в ячейку E5: 2110
в ячейку G5: 4190
в ячейку H5: 1005
4. Удельную теплоту плавления льда λ в Дж/кг вписываем
в ячейку F6: 330000
5. Массу веществ m в кг вписываем соответственно для стали и льда
в ячейку D7: 3000
в ячейку E7: 20
Так как при превращении льда в воду масса не изменяется, то
в ячейках F7 и G7: =E7 =20
Массу воздуха находим произведением объема помещения на удельный вес
в ячейке H7: =24*15*7*1,23 =3100
6. Время процессов t в мин пишем только один раз для стали
в ячейку D8: 60
Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно
в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8) =9,7
в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8) =41,0
в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8) =9,4
Воздух также должен прогреться за это же самое отведенное время, читаем
в ячейке H8: =D8 =60,0
7. Начальную температуру всех веществ T1 в ˚C заносим
в ячейку D9: -37
в ячейку E9: -37
в ячейку F9:
в ячейку G9:
в ячейку H9: -37
8. Конечную температуру всех веществ T2 в ˚C заносим
в ячейку D10: 18
в ячейку E10:
в ячейку F10:
в ячейку G10: 18
в ячейку H10: 18
Думаю, вопросов по п.7 и п.8 быть недолжно.
Результаты расчетов:
9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем
для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000 =75900
для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000 = 1561
для плавления льда в ячейке F12: =F7*F6/1000 = 6600
для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000 = 1508
для нагрева воздуха в ячейке H12: =H7*H5*(H10-H9)/1000 = 171330
Общее количество необходимой для всех процессов тепловой энергии считываем
в объединенной ячейке D13E13F13G13H13: =СУММ(D12:H12) = 256900
В ячейках D14, E14, F14, G14, H14, и объединенной ячейке D15E15F15G15H15 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).
10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается
для нагрева стали в ячейке D16: =D12/(D8*60) =21,083
для нагрева льда в ячейке E16: =E12/(E8*60) = 2,686
для плавления льда в ячейке F16: =F12/(F8*60) = 2,686
для нагрева воды в ячейке G16: =G12/(G8*60) = 2,686
для нагрева воздуха в ячейке H16: =H12/(H8*60) = 47,592
Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается
в объединенной ячейке D17E17F17G17H17: =D13/(D8*60) = 71,361
В ячейках D18, E18, F18, G18, H18, и объединенной ячейке D19E19F19G19H19 тепловая мощность приведена в дугой единице измерения – в Гкал/час.
На этом расчет в Excel завершен.
Выводы:
Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.
При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).
Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.
Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.
После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБУДЬТЕ ПОДТВЕРДИТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда — в папку «Спам»)!
Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост, понятен и интересен.
Жду вопросы и комментарии на статью!
Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.
Ссылка на скачивание файла: raschet-teplovoy-moshchnosti (xls 19,5KB).
Как рассчитать тепловую мощность конвекторов, обогревателей и прочих отопительных приборов
Теплотехнический расчет – это вычисление требуемой толщины перекрытий в соответствии теплоизоляционных характеристик материалов и мощности нагревательных приборов. Любое помещение для создания комфортных условий в холодное время года требует определенного количества тепла, и неважно проектируется отопительная система частного дома или требуется обогреть только одну комнату – расчеты необходимы.
Все отопительные приборы независимо от типа устройства (конвекторы, радиаторные батареи, обогреватели, тепловые пушки и т.д.) и типа теплоносителя (водяные, газовые, электрические) отапливают помещения и производимое ими тепло называется тепловой мощностью. Именно эта характеристика имеет важнейшее значение при выборе обогревательного прибора.
Например невозможно обогреть мастерскую площадью 20 м 2 и построенную без теплоизоляции при -15 0 С электрическим обогревателем мощностью 1 кВт, а небольшую ванную комнату, расположенную в центре кирпичного дома запросто.
Количество тепла, которое требуется помещению для обогрева, измеряется в килокалориях, а мощности приборов в ваттах, поэтому для перевода одного значения в другое нужно килокалории поделить на 860 и получатся кВт.
Все производители отопительного оборудования обязательно указывают тепловую мощность прибора в паспорте или инструкции. Однако, следует учитывать, что указанная мощность достигается при соблюдении всех условий эксплуатации т.е. для водяных конвекторов или радиаторов имеет значение температура теплоносители, а для газовых приборов давление газа.
Поэтому помимо мощности отопления производители указывают, для каких условий эксплуатации предназначено оборудование.
Например, если у вас старая система центрального отопления с температурой нагрева 40-50 0 С, рекомендуется приобретать конвекторы для низкотемпературных систем отопления.
Простейший расчет тепловой мощности обогревателя
Существует общепринятый стандарт расчета тепловой мощности обогревателя при высоте помещения не более 3 м. На 10 метров квадратных площади устанавливается 1 кВт мощности прибора.
Эта формула неплохо работает при расчетах электрических отопительных приборов в помещениях с идеальными условиями — высокой теплоизоляцией, минимальной теплопотерей и одним окном с утепленным стеклопакетом. Но существует и примитивный вариант расчета, позволяющий учитывать и высоту комнат.
Простой расчет тепловой нагрузки (Q) помещения:
V (объем помещения/м3) х 40 Вт/1000 = Q (кВт/ч)
Эта формула не позволяет допустить ошибок, связанных с грубым расчетом по принципу 1 кВт на 10 м 2 т.к., учитывает объем комнаты включая высоту потолков. Однако и при таком расчёте легко совершить оплошность и приобрести «слабый» прибор — не учтено много важных факторов.
Пример расчетов
Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м.
По первой формуле мы выясняем площадь помещения – 5х6 = 30 м 2 и умножаем на 1 кВт. Получается, что нам потребуется обогреватель на 3 кВт.
Но эти расчеты не гарантируют, что, купив обогреватель мощностью 3 кВт, вы получите комфортную температуру в помещении — в столь примитивном расчете даже не учитывается температура за окном. Если в средней полосе 3 кВт могут и справится с отоплением такой гостиной, но на севере с -35 за окном можете не сомневаться, разочарование от покупки и стучащие зубы вам обеспечены.
По второй формуле мы выясняем объем помещения – 4х5х6 = 120 м 3 .
V х 40 Вт/1000 = 120 х 40 / 1000 = 4,8 кВт
Как можно видеть вторая формула более точно отражает необходимую потребность помещения в тепле. Кроме того учитывайте, что эти расчеты обычно применяются в электрических обогревателях, а с прибором мощностью 5 кВт в час вы разоритесь на счетах за электроэнергию, да и далеко не вся проводка выдержит подобную нагрузку.
Формула расчета тепловой нагрузки с учетом разницы температур
Для более точного определения требуемой тепловой мощности обогревателя или конвектора рекомендуем воспользоваться следующими формулой.
V (объем помещения) х T (разница температур) х φ (коэффициент теплопотери) = ккал/ч
- V – это упоминаемый выше объем комнаты: ширина * длину * высоты.
- Т (разница температур) – в зависимости от климатической зоны температура на улице может составлять и -5 0 С и -30 0 С. Поэтому в формулу введен параметр выражающий разницу между средней зимней температурой на улице и желаемой температурой в помещении. Пример: среднее зимнее значение на улице составляет -15 0 С, а в комнате требуется 25 0 С – получается Т = 40 0 С.
- φ – коэффициент теплопотерь помещений в зависимости от конструкции и изоляции.
- 3-4 – отсутствие теплоизоляции. Простые деревянные или металлические строения без изоляции.
- 2-2,9 – низкая теплоизоляция. Кладка в один кирпич, упрощенная конструкция строений, одинарные окна.
- 1-1,9 – средняя теплоизоляция. Строения с кладкой в два кирпича, стандартные здания, обычная кровля, небольшое количество окон.
- 0,6-0,9 — высокая теплоизоляция. Мало окон, сдвоенные рамы, кирпичные стены, двойная теплоизоляция, утепленная крыша и толстое основание пола.
Для получения значения мощности конвектора или обогревателя в киловаттах требуется получившееся в число разделить на 860.
Пример расчетов
Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м. Дом построен кладкой в два кирпича, на хорошем основании (фундамент), с большим панорамным окном. Средняя температура зимой -15 0 С, желаемая температура в комнате +22 0 С.
- Выясняем объем помещения – 4х5х6х = 120 м 3 .
- Определяем разницу температур – 15+22=37 0 С.
- Подбираем коэффициент – возьмем среднее значение 1,4 т.к. несмотря на стены в два кирпича и утолщенный пол присутствует большое окно.
Подставляем данные в формулу:
V х T х φ = 120 х 37 х 1,4 = 6216 ккал .
Переводим килокалории в кВт – 6216/860= 7,2 кВт.
Получается, что для получения требуемой температуры в гостиной нам потребуется установить обогревательный прибор на 7 кВт.
Естественно в данном случае и речи не может быть об установке электрических приборов. Такие значения можно получить при установке газовых или водяных конвекторов, радиаторных батарей, тепловых пушек и т.д. Однако с учетом размеров гостиной, подобная мощность излишня — снова нет в расчете некоторых важных нюансов.
Формула расчета тепловой мощности с учетом дополнительных факторов
Несмотря на введение коэффициента потерь тепла предыдущая формула не способна отразить всевозможные нюансы помещений. Наример теплопотери квартиры расположенной на 5 этаже в центре девятиэтажного здания ниже, чем у угловой квартиры на последнем этаже. Для получения более точных данных рекомендуем воспользоваться формулой:
Q = (100 Вт/м 2 х S х φ1 х φ2 х φ3 х φ4 х φ5 х φ6 х φ7)/1000
- S – площадь помещения в м 2 .
- φ 1 – потери тепла через окна:
- 0,85 – тройной стеклопакет;
- 1 – двойной стеклопакет;
- 1,27 – одинарный стеклопакет (стандартный).
- φ 2 – утепление стен (теплоизоляция):
- 0,854 – высокое;
- 1 – кладка в два кирпича;
- 1,27 – низкое.
- φ 3 – соотношение общей площади окон к площади пола помещения в %:
- 1,2 – 50%;
- 1,1 – 40%;
- 1 – 30%;
- 0,9 – 20%;
- 0,8 – 10%.
- φ 4 – коэффициент умножения в зависимости от температуры внешней среды в минусовых значениях 0 С:
- 1,5 – -35 0 С;
- 1,3 – -25 0 С;
- 1,1 – -20 0 С;
- 0,9 – -15 0 С;
- 0,7 – -10 0 С.
- φ 5 – сколько стен имеют контакт со внешней средой (выходят на улицу):
- 1,4 -4;
- 1,3 -3;
- 1,2 -2;
- 1,1 -1.
- φ 6 – теплоизоляция помещения находящегося сверху над расчетным:
- 0,8 – обогреваемое;
- 0,9 – утеплённое, но не отапливаемое;
- 1 — холодный чердак или крыша.
- φ 7 – высота в метрах:
- 1,2 – 4,5м;
- 1,15 – 4м;
- 1,1 – 3,5м;
- 1,05 – 3м;
- 1 – 2,5м.
Как видите в формуле расчета тепловой мощности обогревательного оборудования учтено значительно больше значений влияющих на теплопотери.
Пример расчета
Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м. Дом построен кладкой в два кирпича, на утепленном фундаменте с большим панорамным окном, со стандартным остеклением, занимающим 50% от площади пола. Средняя температура зимой -15 0 С. На втором этаже отапливаемые спальни, две стены выходят на улицу.
Выясняем требуемые значения и коэффициенты:
- S – 30м 2 .
- φ 1 – 1,27.
- φ 2 – 1.
- φ 3 – 1,2.
- φ 4 – 0,9.
- φ 5 – 1,2.
- φ 6 – 0,8.
- φ 7 – 1,15.
Подставляем значения в формулу:
Q = (100 Вт/м 2 х S х φ 1 х φ 2 х φ 3 х φ 4 х φ 5 х φ 6 х φ 7)/1000
Q = (100 Вт/м 2 х 30 х 1,27 х 1 х 1,2 х 0,9 х 1,2 х 0,8 х 1,15)/1000 = 4,543 кВт
Исходя из этого уточненного расчета, получается, что нам нужно организовать отопление на 4,5-5 кВт.
Эта формула предпочтительна для расчета тепловой мощности отопительных систем, причем она подходит для расчета отопления в небольших жилых помещениях и в организации отопления промышленных объектов.
Важно! Для увеличения срока службы теплового оборудования и для учета непредвиденных ситуаций, рекомендуется добавлять небольшой запас в 10-15 %.к полученной тепловой мощности.
Нюансы при расчете мощности водяных конвекторов
Для выяснения необходимой мощности конвектора водяного отопления нужно учитывать дополнительные факторы, среди которых температура и давление рабочей среды (воды в отопительной системе).
Производители в паспортах и инструкций к водяным конвекторам указывают требуемую температуру теплоносителя, при которой прибор достигнет заявленной мощности. По санитарным нормам температура воды в централизованной системе отопления должна быть 70 градусов.
Однако в зависимости от состояния системы тепловой напор может быть ниже (в старых строениях) или выше (в новостройках). Большинство бытовых конвекторов работают при температуре до 95 0 С, однако максимальная температура, которую выдерживают водяные конвекторы это 120-150 0 С в зависимости от модели. В частных домах определение теплового напора проще — каждый пользователь может контролировать и задавать требуемые рабочие режимы самостоятельно.
Если вы уверены в требуемой температуре теплоносителя, можно приступать к расчетам по описанным формулам. Если вы проживаете в домах старого фонда, система отопления оставляет желать лучшего и зимой батареи нагреваются в пределах 30-60 0 С, выбирайте специализированные конвекторы, рассчитанные на работу в низкотемпературных отопительных системах.
Модели для примера
- Универсал КНУ-С КСК 20 – Настенный водяной конвектор мощностью 2,941 Вт предназначен для отопления помещения площадью до 30 м 2 .
- ТРОПИК II КСК-В20-2 – водяной конвектор отопления на 2,206 кВт. Настенно-напольный тип монтажа, терморегулятор в комплекте.
- FEG EURO F 8.50 CP – газовый конвектор на 7,095 кВт. Предназначен для площадей до 70 м 2 или объемом до 140 м 3 . Расход газа 0,66 м 3 /час.
- Hosseven HBS-12/1V — газовый конвектор на 9,6 кВт. Предназначен для помещений площадью до 96 м 2 . Расход газа 1,12 м 3 /час.
- Ballu BHG-60 – тепловая пушка с обогревом 55 кВт. Работает на сжиженном газе. Воздушная производительность 1450 м 3 /час. Предназначена для обогрева производственных цехов с хорошей вентиляцией.
- Stiebel Eltron CNS 300 S – электрический конвектор на 3 кВт. Настенный тип крепления, механическое управление. Предназначен для комнат площадью до 30 м 2 .
- Electrolux EIH/AG2-2000 E — конвективно-инфракрасный обогреватель на 2 кВт рассчитан на обогрев комнат до 28 м 2 .
Будем рады оценке «Понравилось» или «Не понравилось» и комментарию, о том, что именно не понравилось в статье. Если оценили материал отрицательно и прокомментировали, мы постараемся его улучшить — нам важно знать Ваше мнение!
Тепловой режим и номинальная мощность двигателя
При работе электродвигателя возникают потери , на покрытие которых расходуется часть потребляемой им электрической энергии. Потери возникают в активном сопротивлении обмоток, в стали при изменении магнитного потока в магнитопроводе, а также механические потери на трение в подшипниках и трение о воздух вращающихся частей машины. В конечном итоге вся энергия потерь превращается в тепловую энергию, идущую на нагрев двигателя и рассеивающуюся в окружающей среде.
Потери в двигателе бывают постоянные и переменные. К постоянным относятся потери в стали и механические и потери в обмотках, где ток постоянен, к переменным — потери в обмотках двигателя.
В начальный период после включения большая часть выделяющегося в двигателе тепла идет на повышение его температуры, а меньшая поступает в окружающую среду. Затем по мере увеличения температуры двигателя все большее количество тепла передается в окружающую среду, и наступает момент, когда все выделяемое тепло рассеивается в пространстве. Тогда наступает тепловое равновесие, и дальнейшее повышение температуры двигателя прекращается. Такая температура нагрева двигателя называется установившейся. Установившаяся температура с течением времени остается постоянной, если нагрузка двигателя не изменяется.
Количество тепла Q, которое выделяется в двигателе за 1 с, можно определить по формуле
где η — КПД двигателя; Р2— мощность на валу двигателя.
Из формулы следует, что чем больше нагрузки двигателя, тем больше тепла в нем выделяется и тем выше его установившаяся температура.
Опыт эксплуатации электродвигателей показывает, что основной причиной их выхода из строя является перегрев обмотки. Пока температура изоляции не превышает допустимого значения, тепловой износ изоляции нарастает очень медленно. Но по мере превышения температуры износ изоляции резко возрастает. Практически считают, что перегрев изоляции на каждые 8°С снижает срок ее службы вдвое. Так, двигатель с хлопчатобумажной изоляцией обмоток при номинальной нагрузке и температуре нагрева до 105 °С может работать около 15 лет, при перегрузке и повышении температуры до 145 °С двигатель выйдет из строя уже через 1,5 месяца.
По ГОСТ изоляционные материалы, используемые в электромашиностроении, по нагревостойкости делятся на семь классов, для каждого из которых устанавливается максимально допустимая температура (табл. 1).
Допустимое превышение температуры обмотки двигателя над температурой окружающей среды (в СССР принято + 35 °С) для класса нагревостойкости Y составляет 55 °С, для класса А — 70° С, для класса В — 95° С, для класса Я—145° С, для класса G более 155 °С. Превышение температуры данного двигателя зависит от величины его нагрузки и режима работы. При температуре окружающей среды ниже 35 °С двигатель можно нагрузить выше его номинальной мощности, но так, чтобы при этом температура нагрева изоляции не превышала допустимые нормы.
Характеристика материала | Класс нагревостойкости | Предельно допустимая температура, °С |
Непропитанные хлопчатобумажные ткани, пряжа, бумага и волокнистые материалы из целлюлозы и шелка | Y | 90 |
Те же материалы, но пропитанные связующими | А | 105 |
Некоторые синтетические органические пленки | Е | 120 |
Материалы из слюды, асбеста и стекловолокна, содержащие органические связующие вещества | В | 130 |
Те же материалы в сочетании с синтетическими связующими и пропитывающими веществами | F | 155 |
Те же материалы, но в сочетании с кремний органическими связующими и пропитывающими составами | Н | 180 |
Слюда, керамические материалы, стекло, кварц, асбест, применяемые без связующих составов или с неорганическими связующими составами | G | более 180 |
Исходя из известного количества тепла Q , выделенного при работе двигателя, можно подсчитать превышение температуры двигателя τ °С над температурой окружающей среды, т. е. температуру перегрева
где А — теплоотдача двигателя, Дж/град•с; е —основание натуральных логарифмов (е = 2,718); С — теплоемкость двигателя, Дж/град; τ о — начальное превышение температуры двигателя при τ .
Установившаяся температура двигателя τу может быть получена из предыдущего выражения, если принять τ = ∞ . Тогда τу = Q / А . При τо = 0 равенство (2) примет вид
Обозначим отношение С/А через Т, тогда
где Т — постоянная времени нагрева, с.
Постоянная нагрева — это время, в течение которого двигатель нагрелся бы до установившейся температуры при отсутствии теплоотдачи в окружающую среду. При наличии теплоотдачи температура нагрева будет меньше и равна
Постоянная времени может быть найдена графически (рис.1, а). Для этого из начала координат проводят касательную ОС до пересечения с горизонтальной прямой, проходящей через точку а, соответствующую температуре установившегося нагрева. Отрезок вс будет равен Т, а отрезок ав — времени t у, в течение которого двигатель достигнет установившейся температуры τу . Обычно принимают равным 4T.
Постоянная нагрева зависит от номинальной мощности двигателя, частоты его вращения, конструкции и способа охлаждения, но не зависит от величины его нагрузки.
Рис. 1. Кривые нагрева и охлаждения двигателя: а — графическое определение постоянной нагрева; б — кривые нагрева при различных нагрузках
Если двигатель, после того как он нагреется, отключить от сети, то, начиная с этого момента, он уже не выделяет тепла, а накопленное тепло продолжает рассеиваться в окружающей среде, двигатель охлаждается.
Уравнение охлаждения имеет вид
а кривая показана на рис. 1, а.
В выражении То — постоянная времени охлаждения. Она отличается от постоянной времени нагрева Т, так как теплоотдача двигателя, находящегося в покое, отличается от теплоотдачи работающего двигателя. Равенство возможно в том случае, когда двигатель, отключенный от сети, имеет постороннюю вентиляцию. Обычно кривая охлаждения идет более полого, чем кривая нагрева. У двигателей с внешним обдувом То больше Т примерно в 2 раза. Практически можно считать, что через промежуток времени от 3То до 5То температура двигателя становится равной температуре окружающей среды.
При правильном выборе номинальной мощности двигателя установившаяся температура перегрева должна быть равна допустимому превышению температуры τдоп , соответствующему классу изоляции обмоточного провода. Различным нагрузкам P1
Исходя из изложенного можно дать следующее определение номинальной мощности двигателя. Номинальная мощность двигателя представляет собой мощность на валу, при которой температура его обмотки превышает температуру окружающей среды на величину, соответствующую принятым нормам перегрева.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Ранее на эту тему: Электропривод
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Расчет потерь в тепловых сетях
Здравствуйте, друзья! Расчет тепловых потерь трубопроводами отопления является важным и нужным расчетом, так как позволяет в цифрах определить количество тепла, теряемого в трубах отопления. Также этот расчет важен по той причине, что теплоснабжающие организации включают потери тепла через трубопроводы в оплату теплоэнергии, в том случае если прибор учета тепловой энергии не находится на границе балансовой принадлежности, а от границы раздела до прибора учета тепла есть участки теплотрассы на балансе потребителя тепла.
Вообще, надо сказать, что расчет этот довольно трудоемкий. Ниже приведен пример расчета тепловых потерь трубопроводами отопления. Расчет производится согласно Приказа Министерства энергетики РФ от 30 декабря 2008 г. N 325 «Об утверждении порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя» и методических указаний по составлению энергетической характеристики для систем транспорта тепловой энергии по показателю «тепловые потери» СО 153-34.20.523-2003, Часть 3.
Исходные данные для расчета:
Изоляционный материал: скорлупы минераловатные оштукатуренные,
δ- толщина изоляции = 0,05 м,
α – коэффициент теплоотдачи от изоляции трубопровода к воздуху канала, принимается согласно приложению 9 СНиП 2.04.14-88 равным 8 Вт/(м2 °С),
αв – коэффициент теплоотдачи от воздуха к грунту, принимается согласно приложению 9 СНиП 2.04.14-88 равным 8 Вт/(м2 °С),
H – глубина заложения до оси трубопроводов, м,
Ø – наружный диаметр трубопровода = 0,076 м,
L – длина трассы = 60 м,
b – ширина канала теплосети = 0,9 м,
h — высота канала теплосети = 0,45 м,
tпср.г. – средняя за отопительный сезон температура теплоносителя в подающем трубопроводе = 65,2 °С,
tоср.г — средняя за отопительный сезон температура теплоносителя в обратном трубопроводе= 48,5 °С,
Средняя= (65,2 + 48,5) / 2 = 56,85 °С,
tгрср.г — среднегодовая температура грунта = 4,5 °С,
λгр – коэффициент теплопроводности грунта = 2,56 Вт/(м °С).
Расчет потерь:
Коэффициент теплопроводности изоляции:
λиз = 0,069+0,00019*((56,85+40)/2) =0,07820075 Вт / (м °С).
Термическое сопротивление теплоотдаче от поверхности изоляции в воздушное пространство:
Rвозд = 1 / (π * α * (Ø + 2δ)) = 1 / (π * 8 * (0,076 + 2 * 0,05)) = 0,2262 (м °С) / Вт.
Эквивалентный диаметр сечения канала в свету:
Øэкв. = 2 * h * b / (h + b) = 2 * 0,45 * 0,9 / (0,45 + 0,9) = 0,6 м.
Термическое сопротивление теплоотдаче от воздуха в канале к грунту:
Rвозд.кан = 1 / (π * αв * Øэкв.) = 1 / (π * 8 * 0,6) = 0,06631456 (м °С) / Вт.
Термическое сопротивление массива грунта:
Rгр = (ln (3,5 * (Н / h) * (h / b) 0,25) / (λгр * (5,7 + 0,5 * b / h)) = (ln (3,5 * (1/ 0,45) * (0,45 / 0,9) 0,25) / (2,56 * (5,7 + 0,5 * 0,9 / 0,45)) = 0,109390664 (м °С) / Вт.
Температура воздуха в канале:
tкан = (tпср.г./( Rиз + Rвозд) + tоср.г/( Rиз + Rвозд) + tгрср.г/( Rвозд.кан + Rгр)) / (1/( Rиз + Rвозд) + 1/( Rиз + Rвозд) + 1/( Rвозд.кан + Rгр)) = (65,2/(1,1397+0,2262) + 48,5/(1,1397 + 0,02262) + 4,5/(0,066 + 0,109)) / (1/(1,1397 + 0,2262) + 1/(1,1397 + 0,2262) + 1/(0,066 + 0,109)) = 15,195 °С.
Среднегодовые часовые удельные тепловые потери qр (Вт / м):
qр = (tкан — tгрср.г) / (Rвозд.кан + Rгр) = (15,195 – 4,5) / (0,066 + 0,109) = 61,1 Вт = 52,55 ккал/час.
Часовые тепловые потери при среднегодовых условиях работы тепловой сети:
Qнорм ср.г. = Σ (qр *L *ß) * 10-6 , Гкал/час,
где ß – коэффициент местных потерь (1,2 для Ø
Qнорм ср.г. = 52,55 *60 *1,2 * 10-6 = 0,0038 Гкал/час.
Количество дней : (n)
В мае принята 1-я половина – 15 дней.
В сентябре принята 2-я половина – 15 дней
Qиз мес = Qнормср.г. *(( tпср.м + tоср.м — 2* tгрср.м) / (tпср.г + tоср.г – 2* tгрср.г)) * 24 * n.
Qиз сентябрь = 0,0038 * ((65 + 51,9 – 2 * 13,6) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 15 = 1,17 Гкал;
Qиз октябрь = 0,0038 * ((65 + 51,4 – 2 * 8,9) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 31 = 2,5 Гкал;
Qиз ноябрь = 0,0038 * ((65 + 50– 2 * 5,1) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 30 = 2,74 Гкал;
Qиз декабрь = 0,0038 * ((79 + 56,2– 2 * 3,0) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 31 = 3,5 Гкал;
Qиз январь = 0,0038 * ((75,3 + 54,2– 2 * 1,6) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,4 Гкал;
Qиз февраль = 0,0038 * ((80,2 + 56,9– 2 * 0,9) / (65,2 + 48,5 – 2*4,5)) * 24 * 28 = 3,3 Гкал;
Qиз март = 0,0038 * ((65 + 49,6– 2 * 0,5) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,1 Гкал;
Qиз апрель = 0,0038 * ((65 + 51,3– 2 * 0,9) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,0 Гкал;
Qиз май = 0,0038 * ((65 + 52– 2 * 4,1) / (65,2 + 48,5 – 2*4,5)) * 24 * 15 = 1,42 Гкал.
Суммарные потери тепловой энергии через изоляцию
ΣQиз = 24,13 Гкал.
Совсем недавно я выпустил программу для расчета потерь в тепловых сетях, где максимально автоматизировал процесс расчета теплопотерь трубопроводами отопления.
Как я рассчитываю потери в тепловых сетях по разработанной мной программе можно посмотреть на видео ниже.
Мою программу расчета теплопотерь в тепловых сетях можно
=======>>> посмотреть здесь .
Программу можно получить и напрямую, написав мне через форму обратной связи на моем сайте. В этом случае предусмотрена скидка.
Буду рад комментариям к статье.
43 комментарий на « Расчет потерь в тепловых сетях »
Подскажите пожалуйста. имеется существующая сеть от точки подключения до уутэ порядка 100м. теплоснабжающая компания выставляет счет за потери 10% на основании какого документа можно оспорить эти потери. с расчетом понятно, но какой документ регламентирует применение этих расчетов Спасибо!
Александр, можете ссылаться на нормативные документы, который я привожу в статье, 325 Приказ и СО 153-34.20.523-2003, ч.3.
У нас теплотрасса в лотках длинной 529 метров. Нам насчитывают тепловые потери которые больше чем потребляет все здание площадью 2 177,5 м2. Может существуют какие-то ограничения в процентном выражении. Мне кажется так быть не должно.
Здравствуйте, Дмитрий! Насколько я знаю, каких — либо ограничений в процентном выражении нет.
программа нужна, но не знаю как быть с попутным водопроводом? т. е. с водопроводом хорошо — без водопровода плохо (особенно с таким). Население пользуется водой нагретой до 50 градусов. Наверное нужна дополнительно программа такого расчета, или.
Проблема такая и на самом деле есть, Николай. Но это уже немножко другая тема.
работаю второй год инженером. Село — 8000 населения. Низкоэтажность. Область Новосибирская. 7 котельных. 24 км. тепловых сетей. ГВС — нет. Сетям + — 20 лет. В основном подача с обраткой лежат вместе (греются), а между ними водопровод. Потом только какая — никакая теплоизоляция. При всем этом наш опытный экономист берет потери в сетях 14,5 процентов от выработки. А в конце сезона за колоссальный пережог угля всех собак спускает на тепловые счетчики потребителя. Я знаю уже точно, что мы до 40 проц. топим НЕБО. и водопровод. Поможет мне ваша програмка? Спасибо.
Николай, моя программа поможет вам просчитать грамотно и правильно потери в тепловых сетях. Она, собственно, для этого мной и разработана. Я сам, не так давно, когда еще работал в теплоснабжающей организации, считал по ней потери потребителям. Могу сказать, что уже более 100 человек купили у меня эту программу, и все довольны результатом и качеством расчетов.
Здравствуйте, как можно приобрести Вашу программу по расчету потерь в сетях потребителей?Сколько это будет стоить? Заранее спасибо за ответ.
Здравствуйте, Наталья! Ответил Вам в личном письме, посмотрите свою эл.почту. Приобрести можно либо через продающий сайт (первый вариант) по ссылке в статье, либо напрямую (второй вариант), переведя сумму на карточку или на эл. кошелек, которые я пишу в личном письме. во втором варианте необходимо написать мне через форму обратной связи на этом сайте. После перевода суммы я сразу же вышлю Вам программу. Второй вариант дешевле (со скидкой). В первом варианте (через продающий сайт по ссылке в этой статье) это 1000 р, во втором (напрямую) — 850 р.
Денис, а какие типы изоляции вы использовали в расчёте? И где можно найти более эффективный тип изоляции, при котором потери будут меньше?
Да еще — энергетическое обследование никто и не помнит когда было.
Работаю инженером в г. Иркутске. Программа и правда очень замечательная. Легкая и удобная, всё понятно. Расчеты производит быстро. Мне очень пригодилась эта программа в работе. По расчету потерь просто не заменима.
Спасибо за грамотно составленную программу! Все отлично работает , необходимо внести только свои данные по теплосети и программа все остальное сделает за вас, вообщем доволен программой на 100 %, не жалко потраченных денег. Приобретайте не задумываясь, очень пригодится. Ульяновская область.
Уважаемый Денис! Огромное спасибо за Вашу программу по расчету потерь в тепловых сетях! Представьте себе у нас в предприятии 38 мелких миникотельных.А для расчета тарифов на тепловую энергию необходимо досконально рассчитать потери в тепловых сетях.Я не представляю себе,как это можно сделать вручную по формулам,это адский труд! А благодаря Вами разработанной программе все быстро получилось.Программа работает классно,а главное сделана граммотно.Хотелдось бы еще приобрести программу по рассчете необходимого количества тепла для потребителей рна годт.е. для нас это производственная программа по производству тепловой энергии на нужды отопления. Еще раз огромное Вам спасибо.Вы граммотный специалсит.будьте здоровы! Приезжайте к нам в Ялту!