Расчет тепловой нагрузки на отопление здания: по укрупненным показателям и другие

Расчет тепловой нагрузки на отопление здания: по укрупненным показателям и другие

По вышеприведенной формуле можно посчитать теплопотери всего здания. Для расчета теплопотерь отдельного помещения нужно в формулу подставить объем (по наружному обмеру) этого помещения, а также применить следующие коэффициенты:
для средних помещений нижних этажей – 1,1;
для средних помещений средних этажей – 0,8;
для средних помещений верхних этажей – 1,3;
для угловых помещений нижних этажей – 1,9;
для угловых помещений средних этажей – 1,5;
для угловых помещений верхних этажей – 2,2;
для средних помещений одноэтажных зданий – 0,9;
для угловых помещений одноэтажных зданий – 1,5;
для средних лестничных клеток – 1,2;
для угловых лестничных клеток – 2,0.

Начинаем считать (расчет пока только для жилых зданий). Одним из главных параметров, без которого расчет просто невозможен, является расчетная температура наружного воздуха. Здесь тоже все не так просто, во времена “хрущевок” она рассчитывалась с учетом инерционности (массивности) наружных стен. Однако для расчета инерционности опять-таки необходимо знание материалов стен и их характеристик, поэтому будем считать “как положено сейчас”, держа в уме, что если стена не “в три кирпича” толщиной, то расчетную температуру надо бы градусов на 3÷5 снизить.
Теперь выбираем населенный пункт, для которого необходимо выполнить расчет. Разумеется, в СНиП “Климатология и геофизика” есть данные не для всех населенных пунктов бывшего СССР, поэтому надо выбрать наиболее близкий из имеющихся. Причем близкий территориально не всегда значит близкий по климату. Нередки случаи, когда довольно близко расположенные населенные пункты сильно отличаются по климату. Причины могут быть разные: населенные пункты находятся по разные стороны горной гряды, на разной высоте от уровня моря и т.д.
В функцию выбора заложены данные СНиПа времен СССР. Я переименовал республики в государства, но все субъекты (области, автономные республики, края, населенные пункты и т.д.) остались старыми. То есть если Ваш населенный пункт/край/область переименовывался либо перешел в подчинение в другой регион – ищите его по старым данным.
В левом окне выбираем государство, в среднем появляется список областей/регионов, после выбора области/региона в правом окне появляется список населенных пунктов. В некоторых государствах областей нет, поэтому в среднем окне появится название государства. В некоторых государствах есть населенные пункты, которые не входят в области/регионы. Тогда в среднем окне в списке, кроме названий областей/регионов, появится также название государства, выбрав которое, в правом окне получим список населенных пунктов, не входящих в области/регионы.

Рядом с названием населенного пункта указана его расчетная температура наружного воздуха (средняя температура наиболее холодной пятидневки обеспеченностью 0,92).

Теперь подберем отопительный прибор. Для этого необходимо знать следующие параметры: температуру воды на входе в прибор (температуру подачи), температуру воды на выходе из прибора (температуру обратки) и температуру воздуха в помещении (уже введена в верхней форме).
Если отопление индивидуальное (используется отдельный котел), то температуру подачи рекомендую брать на 5 градусов ниже максимальной температуры котловой воды (смотреть в паспорте котла или в интернете). Обратную температуру рекомендую принимать ниже температуры подачи на: для частных домов с большой длиной труб, большим количеством приборов, вентилей и т.п. – 20 градусов; для частных домов с небольшой длиной труб, небольшим количеством приборов, вентилей и т.п. – 15 градусов; для квартир в многоэтажках с большой длиной труб, большим количеством приборов, вентилей и т.п. – 10 градусов; для квартир в многоэтажках с небольшой длиной труб, небольшим количеством приборов, вентилей и т.п. – 5 градусов.
В случае с отоплением от коммунальных котельных – ситуация сложнее. Теоретически температура теплоносителя определяется тепловым графиком (наиболее распространенный – 150/70), т.е. в морозы до -40 температура воды в сетях должна быть около 150 градусов. В элеваторном узле (в здании) температура понижается до 105 или 95 градусов в морозы. Кроме того, при последовательной схеме подключения (т.н. однотрубная схема) максимальная температура попадает только в первый по стояку прибор.
Плюс к этому изношенность старых сетей и цена энергоносителей приводят к тому, что реально температура воды еще больше снижается. Советовать в такой ситуации что-либо сложно, ну, например, пообщаться с обходчиком абонентских вводов тепловых сетей или оператором ЦТП (центрального теплового пункта) по поводу температуры сетевой вода, а с местным сантехником – о температуре воды в домовых сетях.

Вот, собственно, пока и все. Вопросы, замечания и предложения можно оставить в виде комментария.

Способы расчета тепловой нагрузки на отопление

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

  • 1. Важность параметра
  • 2. Выбор метода
  • 3. Простые способы
    • 3.1. В зависимости от площади
    • 3.2. Укрупненные вычисления

    С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

    Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

    • Характеристики каждого элемента конструкции строения. Система вентиляции существенно влияет на потери теплоэнергии.
    • Размеры здания. Необходимо учитывать как объем всех помещений, так и площадь окон конструкций и наружных стен.
    • Климатическая зона. Показатель максимальной часовой нагрузки зависит от температурных колебаний окружающего воздуха.

    Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

    Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить оптимальные температурные режимы работы системы обогрева для каждого помещения.

    Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

    Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

    Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

    Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

    Это самый простой способ расчета, но он имеет один серьезный недостаток — погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

    Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

    Qот = q0*a*Vн*(tвн — tнро),

    где q0 — удельная тепловая характеристика строения;

    a — поправочный коэффициент;

    Vн — наружный объем строения;

    tвн, tнро — значения температуры внутри дома и на улице.

    В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

    Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

    • Тепловая характеристика здания — 0,49 Вт/м³*С.
    • Уточняющий коэффициент — 1.
    • Оптимальный температурный показатель внутри здания — 22 градуса.

    Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу — Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким — Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

    • Оптимальные температурные параметры в помещениях.
    • Общую площадь строения.
    • Температуру воздуха на улице.

    Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

    Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания — пол, стены, а также потолок.

    Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой — R=d/λ.

    Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем — по вентиляции. В качестве примера можно взять следующие характеристики строения:

    • Площадь и толщина стен — 290 м² и 0,4 м.
    • В строении находятся окна (двойной стеклопакет с аргоном) — 45 м² (R =0,76 м²*С/Вт).
    • Стены изготовлены из полнотелого кирпича — λ=0,56.
    • Здание было утеплено пенополистиролом — d =110 мм, λ=0,036.

    Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен — R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя — R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель — R общ =0,71+3,05= 3,76 м²*С/Вт.

    Фактические теплопотери стен составят — (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой — 125,15*(22+15)= 4,63 кВт/час.

    На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу — 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы — (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, — 4,63+1,27=5,9 кВт/час.

    Результат будет максимально точным, если учитывать потери через пол и крышу. Сложные вычисления здесь проводить необязательно, допускается использование уточняющего коэффициента. Процесс расчетов теплонагрузки на систему обогрева отличается высокой сложностью. Однако его можно упростить с помощью программы VALTEC.

    Самостоятельный расчет тепловой нагрузки на отопление: часовых и годовых показателей

    Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

    1. Зачем нужно знать этот параметр
    2. Выбор методики расчета
    3. Простые способы вычисления тепловой нагрузки
    4. Зависимость мощности отопления от площади
    5. Укрупненный расчет тепловой нагрузки здания
    6. Точные расчеты тепловой нагрузки
    7. Расчет по стенам и окнам
    8. Расчет по вентиляции

    Зачем нужно знать этот параметр

    Распределение тепловых потерь в доме

    Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

    В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

    • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
    • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
    • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

    Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

    Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

    Выбор методики расчета

    Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

    Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

    Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

    Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

    Простые способы вычисления тепловой нагрузки

    Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

    Зависимость мощности отопления от площади

    Таблица поправочных коэффициентов для различных климатических зон России

    Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

    Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

    15*1=15 кВт/час

    Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

    Укрупненный расчет тепловой нагрузки здания

    Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

    Где — удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше, – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

    Таблица удельных тепловых характеристик зданий

    Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн ) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

    Q=0.49*1*480(22+15)= 9,408 кВт

    По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

    Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

    Точные расчеты тепловой нагрузки

    Значение теплопроводности и сопротивление теплопередачи для строительных материалов

    Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

    Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

    R=d/λ

    Расчет по стенам и окнам

    Сопротивление теплопередачи стен жилых зданий

    Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

    В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

    • Площадь стен – 280 м². В нее включены окна – 40 м²;
    • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт;
    • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
    • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
    • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

    Фактически тепловые потери через стены составят:

    (1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

    Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

    124*(22+15)= 4,96 кВт/час

    Расчет по вентиляции

    Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

    (480*40*5)/24= 4000 кДж или 1,11 кВт/час

    Суммируя все полученные показатели можно найти общие тепловые потери дом:

    4,96+1,11=6,07 кВт/час

    Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

    (124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

    Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

    К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

    Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

    Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

    Расчет тепловой нагрузки на отопление здания: по укрупненным показателям и другие

    РУКОВОДСТВО ПО РАСЧЕТУ ТЕПЛОПОТРЕБЛЕНИЯ ЭКСПЛУАТИРУЕМЫХ ЖИЛЫХ ЗДАНИЙ

    HEAT CONSUMPTION CALCULATION MANUAL FOR EXISTING RESIDENTION BUILDINGS

    Дата введения 2011-09-01

    Сведения о руководстве

    1 РАЗРАБОТАНО творческим коллективом специалистов некоммерческого партнерства “Инженеры по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике” (НП “АВОК”) по заданию Департамента топливно-энергетического хозяйства г.Москвы:

    В.И.Ливчак, канд. техн. наук, государственный эксперт по проведению экспертизы проектной документации (НП “АВОК”) – руководитель;

    Ю.А.Табунщиков, доктор техн. наук, проф. (НП “АВОК”);

    М.М.Бродач, канд. техн. наук, проф. (НП “АВОК”);

    Е.Г.Малявина, канд. техн. наук, проф. (МГСУ);

    Н.В.Шилкин, канд. техн. наук, доцент (МАрхИ).

    2 УТВЕРЖДЕНО Первым заместителем Мэра Москвы в Правительстве Москвы, руководителем Комплекса городского хозяйства Москвы 20 сентября 2005 г.

    3 Настоящее руководство согласовано с Департаментом жилищно-коммунального хозяйства и благоустройства г.Москвы, Комитетом по архитектуре и строительству г.Москвы (Москомархитектурой), ОАО “Моспроект”, ГУП “Мосжилниипроект”, ГУП МНИИТЭП, НП “Российское теплоснабжение”, ОАО “ВНИПИэнергопром”, НИИСФ РААСН, НП “Группа Тепло”, ООО “ТЕРМЭК”.

    4 ВЗАМЕН руководства АВОК-8-2007 “Руководство по расчету теплопотребления эксплуатируемых жилых зданий” со следующими уточнениями:

    Документ содержит в качестве приложения оптический носитель (CD-ROM) с программой расчета теплопотребления эксплуатируемых жилых зданий и примером расчета, изложенным в настоящем руководстве.

    Введение

    Количество тепловой энергии, потребляемой системами отопления, вентиляции и горячего водоснабжения здания, является необходимым показателем при определении тепловой эффективности зданий, проведении энергоаудита, деятельности энергосервисных организаций, сравнении фактического теплопотребления здания, измеренного теплосчетчиком, с требуемым исходя из фактических теплотехнических характеристик здания и степени автоматизации системы отопления и во многих других случаях.

    Преимуществами представленного метода определения являются:

    – детализированный в необходимой степени учет теплопотерь за счет воздухообмена с учетом инфильтрации;

    – учет в тепловом балансе здания внутренних теплопоступлений от солнечной радиации и бытовых теплопоступлений;

    – учет в тепловом балансе здания теплопотребления помещениями общественного и технического назначения;

    – возможность проведения расчетов потребления тепловой энергии на отопление и вентиляцию здания не только за отопительный период, но и за отдельные его части.

    В руководстве содержится методика обработки наружных климатических параметров, необходимых для определения расчетного теплопотребления здания при фактических значениях наружных климатических параметров за отопительный или иной период времени.

    1 Область применения

    1.1 Настоящее руководство предназначено для расчета количества тепловой энергии на отопление, вентиляцию и горячее водоснабжение жилых зданий высотой до 25 этажей включительно, в которых встроенно-пристроенные помещения общественного назначения не превышают по площади 15% от площади квартир. Руководство не предназначено для зданий с системой кондиционирования воздуха.

    1.2 Метод расчета количества тепловой энергии на отопление, вентиляцию и горячее водоснабжение жилых зданий предназначен для использования теплоснабжающими организациями, управляющими жилым фондом компаниями, арендаторами и собственниками жилья.

    1.3 Метод расчета, изложенный в руководстве, позволяет:

    – прогнозировать потребление тепловой энергии на отопление, вентиляцию и горячее водоснабжение жилого здания за отопительный период или за его часть;

    – рассчитывать потребление тепловой энергии на отопление, вентиляцию и горячее водоснабжение жилого здания за отопительный период или за его часть при известных (или заданных) значениях сопротивлений теплопередаче и воздухопроницанию ограждающих конструкций здания при отсутствии домовых счетчиков тепловой энергии и горячей воды;

    – сравнивать фактическое теплопотребление здания, измеренное теплосчетчиком, с требуемым исходя из фактических теплотехнических характеристик здания и степени автоматизации системы отопления;

    – распределять объемы потребляемой тепловой энергии на отопление и вентиляцию между зданиями с различными тепловыми характеристиками при наличии счетчиков тепловой энергии на ЦТП и при отсутствии домовых систем учета;

    – разрешать спорные ситуации между теплоснабжающими организациями, управляющими жилым фондом компаниями, арендаторами и собственниками жилья;

    – проводить энергоаудит с целью выявления причин увеличенных теплопотерь;

    – пересчитывать тепловые нагрузки при смене назначения помещений;

    – оценивать в конкретных условиях эффективность энергосберегающих мероприятий;

    – рассчитывать удельные тепловые характеристики зданий по результатам измерений теплосчетчиком;

    – определять лимиты требуемой тепловой энергии на отопление, вентиляцию и горячее водоснабжение жилых зданий.

    1.4 В настоящем руководстве учтены разделение жилища на категории по уровню комфорта, изложенное в МГСН 3.01-2001 “Жилые здания”, нормы минимального воздухообмена в помещениях жилых зданий, приведенные в СТО НП “АВОК” 2.1-2008 “Здания жилые и общественные. Нормы воздухообмена”, а также методика расчета удельного теплопотребления на отопление и вентиляцию жилых зданий за отопительный период, включая встроенно-пристроенные помещения общественного назначения, изложенная в СНиП 23-02-2003 “Тепловая защита зданий”.

    2 Нормативные ссылки

    В настоящем руководстве использованы ссылки на нормативные документы, приведенные в приложении А.

    3 Термины и определения

    В настоящем руководстве использованы термины с соответствующими определениями, приведенные в приложении Б.

    4 Расчет количества тепловой энергии на отопление и вентиляцию жилых зданий за отопительный период при нормативных и при фактических значениях параметров наружного климата

    4.1 Количество тепловой энергии, требуемой для отопления и вентиляции жилых зданий за отопительный период, , кВт·ч, определяют по формуле

    , (1)

    где – теплопотери здания через наружные ограждающие конструкции за отопительный период, кВт·ч; определяют по формуле (2);

    – теплопотери здания за счет вентиляционного воздухообмена с учетом инфильтрации за отопительный период, кВт·ч; определяют по формуле (5);

    – бытовые теплопоступления в квартирах и в помещениях общественного назначения за отопительный период, кВт·ч; определяют по формулам (7а) и (7б);

    – теплопоступления через наружные светопрозрачные ограждающие конструкции от солнечной радиации с учетом ориентации фасадов по восьми румбам за отопительный период, кВт·ч; определяют по формуле (8);

    – коэффициент, учитывающий снижение использования теплопоступлений в периоды превышения их над теплопотерями помещений; 0,8 – для зданий с улучшенной теплозащитой; 0,85 – для зданий строительства до 2000 г. и не подвергавшихся капитальному ремонту;

    – коэффициент эффективности систем автоматического регулирования подачи теплоты на отопление; рекомендуемые значения: 1,0 – в системе отопления с термостатами и пофасадным авторегулированием на узле управления ввода или с поквартирной горизонтальной разводкой; 0,95 – в двухтрубной системе отопления с термостатами и с центральным авторегулированием на вводе; 0,9 – в двухтрубной системе отопления с термостатами без авторегулирования на вводе; 0,9 – в однотрубной системе с термостатами и с центральным авторегулированием на вводе или в однотрубной системе без термостатов и с пофасадным авторегулированием на вводе; 0,85 – в однотрубной системе с термостатами и без авторегулирования на вводе; 0,7 – в системе без термостатов и с центральным авторегулированием на вводе с коррекцией по температуре внутреннего воздуха; 0,6 – в системе без термостатов и с центральным авторегулированием на вводе без коррекции по температуре внутреннего воздуха; 0,5 – в системе без термостатов и без авторегулирования на вводе (центральное регулирование температуры теплоносителя в ЦТП или в котельной в зависимости от температуры наружного воздуха);

    – коэффициент, учитывающий снижение теплопотребления жилых зданий при наличии поквартирного учета потребленной тепловой энергии; из-за отсутствия статистических данных принимают равным: 0,1 – для центральных систем отопления с измерением теплоотдачи на отопительном приборе или на стояке; 0,15 – для квартирных систем отопления с измерением теплосчетчиком в целом на квартиру; 0 – при отсутствии поквартирного учета потребленной тепловой энергии;

    – коэффициент, учитывающий дополнительное теплопотребление системы отопления, связанное с теплопотерями трубопроводов, проходящих через неотапливаемые помещения, дискретностью номинального теплового потока номенклатурного ряда отопительных приборов, их дополнительными теплопотерями через зарадиаторные участки ограждений, повышенной температурой воздуха в угловых помещениях; в приточной вентиляции общественных зданий – учитывающий теплопотери воздуховодов, проложенных в неотапливаемых помещениях; рекомендуемые значения: 1,13 – для многосекционных и других протяженных зданий; 1,11 – для зданий башенного типа; 1,07 – для зданий с отапливаемыми подвалами или с техподпольями, но с отапливаемыми чердаками; 1,05 – для зданий с отапливаемыми чердаками и подвалами, а также с квартирными генераторами теплоты.

    4.2 Теплопотери здания через наружные ограждающие конструкции за отопительный период , кВт·ч, определяют по формуле

    , (2)

    где – градусо-сутки отопительного периода, °С·сут; определяют по формуле

    , (3)

    где – средняя за отопительный период температура внутреннего воздуха в здании, °С; нижнее значение оптимальных параметров принимают по ГОСТ 30494-96: 20 °С – для жилых зданий и помещений общественного назначения, где люди заняты умственным трудом на территориях с -30 °С ( – расчетная температура наружного воздуха для проектирования отопления, °С; принимают по СНиП 23-01-99* как среднюю температуру самой холодной пятидневки с обеспеченностью 0,92, для Москвы принимают -26 °С); 21 °С – то же на территориях с более низкой температурой наружного воздуха; для других помещений – по соответствующим СНиПам;

    , – соответственно средняя за отопительный период температура наружного воздуха, °С, и продолжительность, сут, отопительного периода со средней суточной температурой наружного воздуха ниже 8 °С (по СНиП 23-01-99*), а для территорий с -30 °С и ниже – со средней суточной температурой наружного воздуха ниже 10 °С; для Московского региона на основании Информации Гидрометеобюро по Москве и Московской области о климатических изменениях в Московском регионе (приложение 1 к Постановлению Правительства от 20.04.2010 г. N 333-ПП) принимают (20+1,5)·214=4600 °С·сут;

    – приведенное сопротивление теплопередаче, м ·°С/Вт, стен, окон, витражей, покрытий или перекрытий верхнего этажа, цокольных перекрытий, перекрытий под эркером или над проездом, наружных дверей и ворот; принимают по проектным данным или расчетам по СНиП 23-02-2003 согласно фактической конструкции, для многослойных ограждающих конструкций с учетом коэффициента теплотехнической однородности. Сопротивление теплопередаче стен в земле и полов по грунту при отапливаемых подвалах или отсутствии техподполий следует определять по зонам в соответствии с приложением 9 СНиП 2.04.05-91* ;

    На территории Российской Федерации документ не действует. Действует СНиП 41-01-2003, здесь и далее по тексту. – Примечание изготовителя базы данных.

    Расчет тепловой нагрузки на отопление здания

    В холодное время года у нас в стране отопление зданий и сооружений составляют одну из основных статей расходов любого предприятия. И тут не важно жилое это помещение, производственное или складское. Везде нужно поддерживать постоянную плюсовую температуру, чтобы не замерзли люди, не вышло из строя оборудование или не испортилась продукция или материалы. В ряде случаев требуется провести расчет тепловой нагрузки на отопление того или иного зданий или всего предприятия в целом.

    В каких случаях производят расчет тепловой нагрузки

    • для оптимизации расходов на отопление;
    • для сокращения расчетной тепловой нагрузки;
    • в том случае если изменился состав теплопотребляющего оборудования (отопительные приборы, системы вентиляции и т.п.);
    • для подтверждения расчетного лимита по потребляемой теплоэнергии;
    • в случае проектирования собственной системы отопления или пункта теплоснабжения;
    • если есть субабоненты, потребляющие тепловую энергию, для правильного ее распределения;
    • В случае подключения к отопительной системе новых зданий, сооружений, производственных комплексов;

    На каком основании может производиться перерасчет тепловой нагрузки на отопление здания

    Приказ Министерства Регионального Развития № 610 от 28.12.2009 “Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок” (Скачать) закрепляет право потребителей теплоэнергии производить расчет и перерасчет тепловых нагрузок. Так же такой пункт обычно присутствует в каждом договоре с теплоснабжающей организацией. Если такого пункта нет, обсудите с вашими юристами вопрос его внесения в договор.

    Но для пересмотра договорных величин потребляемой тепловой энергии должен быть предоставлен технический отчет с расчетом новых тепловых нагрузок на отопление здания, в котором должны быть приведены обоснования снижения потребления тепла. Кроме того, перерасчет тепловых нагрузок производиться после таких мероприятий как:

    • капитальный ремонт здания;
    • реконструкция внутренних инженерных сетей;
    • повышение тепловой защиты объекта;
    • другие энергосберегающие мероприятия.

    Методика расчета

    Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:

    1. Сбор исходных данные об объекте.
    2. Проведение энергетического обследования здания.
    3. На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
    4. Составление технического отчета.
    5. Согласование отчета в организации, предоставляющей теплоэнергию.
    6. Заключение нового договора или изменение условий старого.

    Сбор исходный данных об объекте тепловой нагрузки

    Какие данные необходимо собрать или получить:

    1. Договор (его копия) на теплоснабжение со всеми приложениями.
    2. Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
    3. План БТИ (копия).
    4. Данные по системе отопления: однотрубная или двухтрубная.
    5. Верхний или нижний розлив теплоносителя.

    Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:

    • площадь отапливаемых помещений;
    • тип системы отопления;
    • наличия горячего водоснабжения и вентиляции.

    Энергетическое обследование здания

    Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции. Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии. Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.

    В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.

    Технический отчет

    Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:

    1. Исходные данные об объекте.
    2. Схема расположения радиаторов отопления.
    3. Точки вывода ГВС.
    4. Сам расчет.
    5. Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
    6. Приложения.
      1. Свидетельство членства в СРО энергоаудитора.
      2. Поэтажный план здания.
      3. Экспликация.
      4. Все приложения к договору по энергоснабжению.

    После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.

    Пример расчета тепловых нагрузок объекта коммерческого назначения

    Это помещение на первом этаже 4-х этажного здания. Месторасположение – г. Москва.

    Исходные данные по объекту

    Адрес объекта г. Москва
    Этажность здания 4 этажа
    Этаж на котором расположены обследуемые помещения первый
    Площадь обследуемых помещений 112,9 кв.м.
    Высота этажа 3,0 м
    Система отопления Однотрубная
    Температурный график 95-70 град. С
    Расчетный температурный график для этажа на котором находится помещение 75-70 град. С
    Тип розлива Верхний
    Расчетная температура внутреннего воздуха + 20 град С
    Отопительные радиаторы, тип, количество Радиаторы чугунные М-140-АО – 6 шт.
    Радиатор биметаллический Global (Глобал) – 1 шт.
    Диаметр труб системы отопления Ду-25 мм
    Длина подающего трубопровода системы отопления L = 28,0 м.
    ГВС отсутствует
    Вентиляция отсутствует
    Тепловая нагрузка по договору (час/год) 0,02/47,67 Гкал

    Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.

    Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.

    Итоговый максимальный расход – 0,008958 Гкал/час или 23 Гкал/год.

    В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.

    Формула расчета в Гкал

    Расчет тепловой нагрузки на отопление здания в случае отсутствия счетчиков учета тепловой энергии производится по формуле Q = V * (Т1 – Т2) / 1000, где:

    • V – объем волы, которую потребляет система отопления, измеряется тоннами или куб.м.,
    • Т1 – температура горячей воды. Измеряется в С (градусы по Цельсию) и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если точно определить температуру нельзя то используют усредненные показатели 60-65 С.
    • Т2 – температура холодной воды. Зачастую ее измерить практически невозможно и в таком случае используют постоянные показатели, которые зависят от региона. К примеру, в одном из регионов, в холодное время года показатель будет равен 5, в теплое – 15.
    • 1 000 – коэффициент для получения результата расчета в Гкал.

    Для системы отопления с закрытым контуром тепловая нагрузка (Гкал/час) рассчитывается другим способом: Qот = α * qо * V * (tв – tн.р) * (1 + Kн.р) * 0,000001, где:

    • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 С;
    • V – объем строения по наружным замерам;
    • – удельный отопительный показатель строения при заданной tн.р = -30 С, измеряется в Ккал/куб.м.*С;
    • – расчетная внутренняя температура в здании;
    • tн.р – расчетная уличная температура для составления проекта системы отопления;
    • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

    Расчет по радиаторам отопления на площадь

    Укрупненный расчет

    Если на 1 кв.м. площади требуется 100 Вт тепловой энергии, то помещение в 20 кв.м. должно получать 2 000 Вт. Типичный радиатор из восьми секций выделяет около 150 Вт тепла. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

    Точный расчет

    Точный расчет выполняется по следующей формуле: Qт = 100 Вт/кв.м. × S(помещения)кв.м. × q1 × q2 × q3 × q4 × q5 × q6× q7, где:

    • q1 – тип остекления: обычное =1,27; двойное = 1,0; тройное = 0,85;
    • q2 – стеновая изоляция: слабая, или отсутствующая = 1,27; стена выложенная в 2 кирпича = 1.0, современна, высокая = 0,85;
    • q3 – соотношение суммарной площади оконных проемов к площади пола: 40% = 1,2; 30% = 1,1; 20% – 0,9; 10% = 0,8;
    • q4 – минимальная уличная температура: -35 С = 1,5; -25 С = 1,3; -20 С = 1,1; -15 С = 0,9; -10 С = 0,7;
    • q5 – число наружных стен в помещении: все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2;
    • q6 – тип расчетного помещения над расчетной комнатой: холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8;
    • q7 – высота потолков: 4,5 м = 1,2; 4,0 м = 1,15; 3,5 м = 1,1; 3,0 м = 1,05; 2,5 м = 1,3.

    Расчет тепловых нагрузок на отопление, методика и формула расчета

    Введение

    Требования по определению тепловых нагрузок потребителей при разработке схем теплоснабжения отражены в следующих нормативных и законодательных актах:

    — Федеральный Закон РФ от 27.07.2010 г. № 190-ФЗ ;

    — приказ Министерства регионального развития РФ от 28.02.2009 г. № 610 ;

    Договорные нагрузки, как правило, рассчитываются на основании проектных данных. Проектные нагрузки на отопление, в основном, зависят от расчётных параметров микроклимата помещений, расчётной температуры наружного воздуха в отопительный период (принимаемой равной температуре наиболее холодной пятидневки с обеспеченностью 0,92 по 8. СП 131.13330.2012 ) и теплоизоляционных характеристик ограждающих конструкций. Проектные нагрузки на ГВС зависят от объёмов потребления горячей воды и её расчётной температуры.

    За последние 20-30 лет многие из перечисленных выше параметров и характеристик неоднократно менялись. Менялись методики расчёта тепловых нагрузок, требования по тепловой защите ограждающих конструкций. В частности, в класс энергетической эффективности многоквартирных домов (МКД) определяется, исходя из сравнения (определение величины отклонения) фактических или расчётных (для вновь построенных, реконструированных и прошедших капитальный ремонт МКД) значений показателя удельного годового расхода энергетических ресурсов, отражающего удельный расход энергетических ресурсов на отопление, вентиляцию, ГВС и базовых значений показателя удельного расхода энергетических ресурсов в МКД. При этом фактические (расчётные) значения должны быть приведены к расчётным условиям для сопоставимости с базовыми значениями. Фактические значения показателя удельного годового расхода энергетических ресурсов определяются на основании показаний общедомовых приборов учёта.

    Менялся и сам климат, в результате чего, например, для Санкт-Петербурга нормативная расчётная температура наружного воздуха за тридцать, с небольшим, лет повышена с –26 °С до –24 °С, расчётная длительность отопительного периода уменьшилась на 6 дней, а средняя температура отопительного периода увеличилась на 0,5 °С (с –1,8 до –1,3 °С).

    Кроме указанных выше факторов, сами потребители тепловой энергии вносят вклад в энергосберегающие мероприятия, например, путём замены в квартирах деревянных окон на более герметичные – пластиковые.

    Все эти изменения, в совокупности, способствуют тому, что фактическое теплопотребление и договорные тепловые нагрузки потребителей тепловой энергии отличаются.

    Примеры разработанных Схем теплоснабжения ряда крупных населённых пунктов (например, Нижнего Новгорода) показали, что, если в качестве фактической нагрузки принимается договорная нагрузка (нагрузка, установленная в договорах теплоснабжения), это создаёт избыточный запас мощности теплоснабжающих организаций. Значительная доля нагрузки в этом случае оказывается невостребованной, но при этом сохраняются постоянные эксплуатационные расходы, что негативно отражается и на эффективности теплоснабжающих организаций (ТСО) и на потребителе тепловой энергии.

    В Стратегии отмечено, что применяемая в настоящее время технология планирования систем теплоснабжения приводит к излишним инвестициям, созданию избыточной тепловой мощности во всех элементах энергосистем и сохранению низкого уровня эффективности всей российской энергетики.

    Актуальность поднимаемой в статье темы обусловлена отсутствием в действующих нормативных и законодательных актах методов определения фактических тепловых нагрузок в расчётных элементах территориального деления при расчётных температурах наружного воздуха, проблемами согласования фактических тепловых нагрузок, применяемых для инвестиционного планирования в Схемах теплоснабжения с ТСО, а также последствиями неверного анализа тепловых нагрузок потребителей, установленных в договорах теплоснабжения.

    Энергетическое обследование проектируемых режимов работы системы теплоснабжения

    При проектировании система теплоснабжения ЗАО «Термотрон-завод» была рассчитана на максимальные нагрузки.

    Система проектировалась на 28 потребителей тепла. Особенность системы теплоснабжения в том, что часть потребителей тепла от выхода котельной до главного корпуса завода. Далее потребитель тепла — главный корпус завода, и затем остальная часть потребителей располагается за главным корпусом завода. То есть главный корпус завода является внутренним теплопотребителем и транзитом подачи тепла для последней группы потребителей тепловой нагрузки.

    Котельная проектировалась на паровые котлы ДКВР 20-13 в количестве 3 штук, работающие на природном газе, и водогрейные котлы ПТВМ-50 в количестве 2 штук.

    Одним из важнейших этапов проектирования тепловых сетей являлось определение расчетных тепловых нагрузок.

    Расчетный расход тепла на отопление каждого помещения можно определить двумя способами:

    — из уравнения теплового баланса помещения;

    — по удельной отопительной характеристике здания.

    Проектные значения тепловых нагрузок производился по укрупненным показателям, исходя из объема зданий по фактуре .

    Расчетный расход тепла на отопление i-го производственного помещения , кВт, определяется по формуле:

    где: — коэффициент учета района строительства предприятия:

    где — удельная отопительная характеристика здания, Вт/(м3.К);

    — объем здания, м3;

    — расчетная температура воздуха в рабочей зоне, ;

    — расчетная температура наружного воздуха для расчета отопительной нагрузки, для города Брянска составляет -24.

    Определение расчетного расхода тепла на отопление для помещений предприятия производилось по удельной отопительной нагрузке (табл. 1).

    Таблица 1Расходы тепла на отопление для всех помещений предприятия

    Объем здания, V, м3

    Удельная отопительная характеристика q0, Вт/м3К

    Определение расчетных часовых нагрузок отопления, приточной вентиляции и горячего водоснабжения расчетные тепловые нагрузки

    1.1. Расчетную часовую тепловую нагрузку отопления следует принимать по типовым или индивидуальным проектам зданий.

    В случае отличия принятого в проекте значения расчетной температуры наружного воздуха для проектирования отопления от действующего нормативного значения для конкретной местности, необходимо произвести пересчет приведенной в проекте расчетной часовой тепловой нагрузки отапливаемого здания по формуле:

    , (3.1)

    где Qo max – расчетная часовая тепловая нагрузка отопления здания, Гкал/ч;

    Qo max пр – то же, по типовому или индивидуальному проекту, Гкал/ч;

    tj – расчетная температура воздуха в отапливаемом здании, °С; принимается в соответствии с таблицей 1;

    to – расчетная температура наружного воздуха для проектирования отопления в местности, где расположено здание, согласно СНиП 23-01-99 [1], °С;

    to.пр – то же, по типовому или индивидуальному проекту, °С.

    Таблица 1. Расчетная температура воздуха в отапливаемых зданиях

    Расчетная температура воздуха в здании tj, °С

    Гостиница, общежитие, административное здание

    Детский сад, ясли, поликлиника, амбулатория, диспансер, больница

    Высшее, среднее специальное учебное заведение, школа, школа-интернат, предприятие общественного питания, клуб

    Театр, магазин, пожарное депо

    В местностях с расчетной температурой наружного воздуха для проектирования отопления -31 °С и ниже значение расчетной температуры воздуха внутри отапливаемых жилых зданий следует принимать в соответствии с главой СНиП 2.08.01-85 [9] равным 20 °С.

    1.2. При отсутствии проектной информации расчетную часовую тепловую нагрузку отопления отдельного здания можно определить по укрупненным показателям:

    , (3.2)

    где  – поправочный коэффициент, учитывающий отличие расчетной температуры наружного воздуха для проектирования отопления to от to = -30 °С, при которой определено соответствующее значение qo; принимается по таблице 2;

    V – объем здания по наружному обмеру, м 3 ;

    qo – удельная отопительная характеристика здания при to = -30 °С, ккал/м 3 ч°С; принимается по таблицам 3 и 4;

    Kи.р – расчетный коэффициент инфильтрации, обусловленной тепловым и ветровым напором, т.е. соотношение тепловых потерь зданием с инфильтрацией и теплопередачей через наружные ограждения при температуре наружного воздуха, расчетной для проектирования отопления.

    Таблица 2. Поправочный коэффициент  для жилых зданий

    Расчетная температура наружного воздуха to, °C

    Таблица 3. Удельная отопительная характеристика жилых зданий

    Наружный строительный объем V, м 3

    Удельная отопительная характеристика qo, ккал/м 3 ч °С

    постройка до 1958 г.

    постройка после 1958 г.

    Таблица 3а. Удельная отопительная характеристика зданий, построенных до 1930 г.

    Объем здания по наружному обмеру, м 3

    Удельная отопительная характеристика здания, ккал/м 3 ч °С, для районов с расчетной температурой наружного воздуха для проектирования отопления to, °C

    to to  -30 °С

    Таблица 4. Удельная тепловая характеристика административных, лечебных и культурно-просветительных зданий, детских учреждений

    Объем зданий V, м 3

    Удельные тепловые характеристики

    для отопления qo, ккал/м 3 ч °С

    для вентиляции qv, ккал/м 3 ч °С

    Административные здания, конторы

    Детские сады и ясли

    Школы и высшие учебные заведения

    Предприятия общественного питания, столовые, фабрики-кухни

    Значение V, м 3 , следует принимать по информации типового или индивидуального проектов здания или бюро технической инвентаризации (БТИ).

    Если здание имеет чердачное перекрытие, значение V, м 3 , определяется как произведение площади горизонтального сечения здания на уровне его I этажа (над цокольным этажом) на свободную высоту здания – от уровня чистого пола I этажа до верхней плоскости теплоизоляционного слоя чердачного перекрытия, при крышах, совмещенных с чердачными перекрытиями, – до средней отметки верха крыши. Выступающие за поверхности стен архитектурные детали и ниши в стенах здания, а также неотапливаемые лоджии при определении расчетной часовой тепловой нагрузки отопления не учитываются.

    При наличии в здании отапливаемого подвала к полученному объему отапливаемого здания необходимо добавить 40% объема этого подвала. Строительный объем подземной части здания (подвал, цокольный этаж) определяется как произведение площади горизонтального сечения здания на уровне его I этажа на высоту подвала (цокольного этажа).

    Расчетный коэффициент инфильтрации Kи.р определяется по формуле:

    , (3.3)

    где g – ускорение свободного падения, м/с 2 ;

    L – свободная высота здания, м;

    w – расчетная для данной местности скорость ветра в отопительный период, м/с; принимается по СНиП 23-01-99 [1].

    Вводить в расчет расчетной часовой тепловой нагрузки отопления здания так называемую поправку на воздействие ветра не требуется, т.к. эта величина уже учтена в формуле (3.3).

    В местностях, где расчетное значение температуры наружного воздуха для проектирования отопления to  -40 °С, для зданий с неотапливаемыми подвалами следует учитывать добавочные тепловые потери через необогреваемые полы первого этажа в размере 5% [11].

    Для зданий, законченных строительством, расчетную часовую тепловую нагрузку отопления следует увеличивать на первый отопительный период для каменных зданий, построенных:

    – в мае-июне – на 12%;

    – в июле-августе – на 20%;

    – в сентябре – на 25%;

    – в отопительном периоде – на 30%.

    1.3. Удельную отопительную характеристику здания qo, ккал/м 3 ч °С, при отсутствии в табл.3 и 4 соответствующего его строительному объему значения qo, можно определить по формуле:

    , (3.4)

    где a = 1,6 ккал/м 2,83 ч °С; n = 6 – для зданий строительства до 1958 г.;

    a = 1,3 ккал/м 2,875 ч °С; n = 8 – для зданий строительства после 1958 г.

    1.4. В случае если часть жилого здания занята общественным учреждением (контора, магазин, аптека, приемный пункт прачечной и т.д.), расчетная часовая тепловая нагрузка отопления должна быть определена по проекту. Если расчетная часовая тепловая нагрузка в проекте указана только в целом по зданию, или определена по укрупненным показателям, тепловую нагрузку отдельных помещений можно определить по площади поверхности теплообмена установленных нагревательных приборов, используя общее уравнение, описывающее их теплоотдачу:

    Q = k Ft, (3.5)

    где k – коэффициент теплопередачи нагревательного прибора, ккал/м 3 ч °С;

    F – площадь поверхности теплообмена нагревательного прибора, м 2 ;

    t – температурный напор нагревательного прибора, °С, определяемый как разность средней температуры нагревательного прибора конвективно-излучающего действия и температуры воздуха в отапливаемом здании.

    Методика определения расчетной часовой тепловой нагрузки отопления по поверхности установленных нагревательных приборов систем отопления приведена в [10].

    1.5. При подключении полотенцесушителей к системе отопления расчетную часовую тепловую нагрузку этих отопительных приборов можно определить как теплоотдачу неизолированных труб в помещении с расчетной температурой воздуха tj = 25 °С по методике, приведенной в [10].

    1.6. При отсутствии проектных данных и определении расчетной часовой тепловой нагрузки отопления производственных, общественных, сельскохозяйственных и других нетиповых зданий (гаражей, подземных отапливаемых переходов, бассейнов, магазинов, киосков, аптек и т.д.) по укрупненным показателям, уточнение значений этой нагрузки следует производить по площади поверхности теплообмена установленных нагревательных приборов систем отопления в соответствии с методикой, приведенной в [10]. Исходная информация для расчетов выявляется представителем теплоснабжающей организации в присутствии представителя абонента с составлением соответствующего акта.

    1.7. Расход тепловой энергии на технологические нужды теплиц и оранжерей, Гкал/ч, определяется из выражения:

    , (3.6)

    где Qcxi – расход тепловой энергии на i-e технологические операции, Гкал/ч;

    n – количество технологических операций.

    Qcxi =1,05 (Qтп + Qв) + Qпол + Qпроп, (3.7)

    где Qтп и Qв – тепловые потери через ограждающие конструкции и при воздухообмене, Гкал/ч;

    Qпол + Qпроп – расход тепловой энергии на нагрев поливочной воды и пропарку почвы, Гкал/ч;

    1,05 – коэффициент, учитывающий расход тепловой энергии на отопление бытовых помещений.

    1.7.1. Потери теплоты через ограждающие конструкции, Гкал/ч, можно определить по формуле:

    Qтп = FK (tjto) 10 -6 , (3.8)

    где F – площадь поверхности ограждающей конструкции, м 2 ;

    K – коэффициент теплопередачи ограждающей конструкции, ккал/м 2 ч °С; для одинарного остекления можно принимать K = 5,5, однослойного пленочного ограждения K = 7,0 ккал/м 2 ч °С;

    tj и to – технологическая температура в помещении и расчетная наружного воздуха для проектирования соответствующего сельскохозяйственного объекта, °С.

    1.7.2. Тепловые потери при воздухообмене для оранжерей со стеклянными покрытиями, Гкал/ч, определяются по формуле:

    Qв = 22,8 Fинв S (tjto) 10 -6 , (3.9)

    где Fинв – инвентарная площадь оранжереи, м 2 ;

    S – коэффициент объема, представляющий собой соотношение объема оранжереи и ее инвентарной площади, м; может быть принят в пределах от 0,24 до 0,5 для малых оранжерей и 3 и более м – для ангарных.

    Тепловые потери при воздухообмене для оранжерей с пленочным покрытием, Гкал/ч, определяются по формуле:

    Qв = 11,4 Fинв S (tjto) 10 -6 . (3.9a)

    1.7.3. Расход тепловой энергии на нагрев поливочной воды, Гкал/ч, определяется из выражения:

    , (3.10)

    где Fполз – полезная площадь оранжереи, м 2 ;

    n – продолжительность полива, ч.

    1.7.4. Расход тепловой энергии на пропарку почвы, Гкал/ч, определяется из выражения:

    . (3.11)

    2. Приточная вентиляция

    2.1. При наличии типового или индивидуального проектов здания и соответствии установленного оборудования системы приточной вентиляции проекту расчетную часовую тепловую нагрузку вентиляции можно принять по проекту с учетом различия значений расчетной температуры наружного воздуха для проектирования вентиляции, принятого в проекте, и действующим нормативным значением для местности, где расположено рассматриваемое здание.

    Пересчет производится по формуле, аналогичной формуле (3.1):

    , (3.1a)

    где Qв.р – расчетная часовая нагрузка приточной вентиляции, Гкал/ч;

    Qв.пр – то же, по проекту, Гкал/ч;

    tv.пр – расчетная температура наружного воздуха, при которой определена тепловая нагрузка приточной вентиляции в проекте, °С;

    tv – расчетная температура наружного воздуха для проектирования приточной вентиляции в местности, где расположено здание, °С; принимается по указаниям СНиП 23-01-99 [1].

    2.2. При отсутствии проектов или несоответствии установленного оборудования проекту расчетная часовая тепловая нагрузка приточной вентиляции должна быть определена по характеристикам оборудования, установленного в действительности, в соответствии с общей формулой, описывающей теплоотдачу калориферных установок:

    Q = Lc (2 + 1) 10 -6 , (3.12)

    где L – объемный расход нагреваемого воздуха, м 3 /ч;

     – плотность нагреваемого воздуха, кг/м 3 ;

    c – теплоемкость нагреваемого воздуха, ккал/кг;

    2 и 1 – расчетные значения температуры воздуха на входе и выходе калориферной установки, °С.

    Методика определения расчетной часовой тепловой нагрузки приточных калориферных установок изложена в [10].

    Допустимо определять расчетную часовую тепловую нагрузку приточной вентиляции общественных зданий по укрупненным показателям согласно формуле:

    Qv = Vqv (tjtv) 10 -6 , (3.2а)

    где qv – удельная тепловая вентиляционная характеристика здания, зависящая от назначения и строительного объема вентилируемого здания, ккал/м 3 ч °С; можно принимать по таблице 4.

    3. Горячее водоснабжение

    3.1. Средняя часовая тепловая нагрузка горячего водоснабжения потребителя тепловой энергии Qhm, Гкал/ч, в отопительный период определяется по формуле:

    , (3.13)

    где a – норма затрат воды на горячее водоснабжение абонента, л/ед. измерения в сутки; должна быть утверждена местным органом самоуправления; при отсутствии утвержденных норм принимается по таблице Приложения 3 (обязательного) СНиП 2.04.01-85 [3];

    N – количество единиц измерения, отнесенное к суткам, – количество жителей, учащихся в учебных заведениях и т.д.;

    tc – температура водопроводной воды в отопительный период, °С; при отсутствии достоверной информации принимается tc = 5 °С;

    T – продолжительность функционирования системы горячего водоснабжения абонента в сутки, ч;

    Qт.п – тепловые потери в местной системе горячего водоснабжения, в подающем и циркуляционном трубопроводах наружной сети горячего водоснабжения, Гкал/ч.

    3.2. Среднюю часовую тепловую нагрузку горячего водоснабжения в неотопительный период, Гкал, можно определить из выражения:

    , (3.13a)

    где Qhm – средняя часовая тепловая нагрузка горячего водоснабжения в отопительный период, Гкал/ч;

     – коэффициент, учитывающий снижение средней часовой нагрузки горячего водоснабжения в неотопительный период по сравнению с нагрузкой в отопительный период; если значение  не утверждено органом местного самоуправления,  принимается равным 0,8 для жилищно-коммунального сектора городов средней полосы России, 1,2-1,5 – для курортных, южных городов и населенных пунктов, для предприятий – 1,0;

    ths, th – температура горячей воды в неотопительный и отопительный период, °С;

    tcs, tc – температура водопроводной воды в неотопительный и отопительный период, °С; при отсутствии достоверных сведений принимается tcs = 15 °С, tc = 5 °С.

    3.3. Тепловые потери трубопроводами системы горячего водоснабжения могут быть определены по формуле:

    , (3.14)

    где Ki – коэффициент теплопередачи участка неизолированного трубопровода, ккал/м 2 ч °С; можно принимать Ki = 10 ккал/м 2 ч °С;

    di и li – диаметр трубопровода на участке и его длина, м;

    tн и tк – температура горячей воды в начале и конце расчетного участка трубопровода, °С;

    tокр – температура окружающей среды,°С; принимать по виду прокладки трубопроводов:

    – в бороздах, вертикальных каналах, коммуникационных шахтах сантехкабин tокр = 23 °С;

    – в ванных комнатах tокр = 25 °С;

    – в кухнях и туалетах tокр = 21 °С;

    – на лестничных клетках tокр = 16 °С;

    – в каналах подземной прокладки наружной сети горячего водоснабжения tокр = tгр;

    – в тоннелях tокр = 40 °С;

    – в неотапливаемых подвалах tокр = 5 °С;

    – на чердаках tокр = -9 °С (при средней температуре наружного воздуха самого холодного месяца отопительного периода tн = -11 . -20 °С);

     – коэффициент полезного действия тепловой изоляции трубопроводов; принимается для трубопроводов диаметром до 32 мм  = 0,6; 40-70 мм  = 0,74; 80-200 мм  = 0,81.

    Таблица 5. Удельные тепловые потери трубопроводов систем горячего водоснабжения (по месту и способу прокладки)

    Место и способ прокладки

    Тепловые потери трубопровода, ккал/чм, при условном диаметре, мм

    Читайте также:
    Теплоизоляция Броня: описание, виды, характеристики, сфера применения
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: