Пусковой конденсатор для кондиционера: емкость, схема, подбор

Пусковой и рабочий конденсаторы кондиционера

Мы продолжаем цикл статей из серии “Сделай сам”. Сегодня поговорим о конденсаторах.

Во-первых, давайте договоримся не путать элементы, присутствующие в любом кондиционере: конденсатор и конденсер. Конденсер – элемент замкнутой системы, по которой циркулирует хладагент, это, собственно, радиатор, т.е. змеевик с оребрением, предназначенный для лучшего охлаждения газообразного хладагента в наружном блоке любой холодильной системы (например, кондиционера). Часто конденсер называют конденсатором. По сути правильно, ведь в нем хладагент из газообразного состояния начинает конденсироваться в жидкое (если быть совсем точным, паровая смесь охлаждается и подготавливается к тому, чтобы превратиться в жидкость под большим давлением).

Конденсатор в электрической цепи выполняет, в общем, ту же функцию, но для электричества. Говоря простым языком, электричество собирается в конденсаторе, чтобы при необходимости быть использованным, но как бы в больших количествах, чем оно находится в сети питания 220 В.

Если в кондиционере не пускается компрессор (т.е. кондиционер может работать просто как вентилятор, не охлаждая; неработающий компрессор можно определить по отсутствию характерного шума-гудения наружного блока, хотя при этом внутренний блок, кажется, работает нормально, но не охлаждает), первым делом подозрение падает на отсутствие напряжения питания. Если после теста мы выясняем, что питание 220 В на подводящих клеммах есть, то следующим в очереди будет рабочий (пусковой) конденсатор. Как было сказано выше и как следует из названия, пусковой конденсатор конденсирует энергию и использует большую силу тока, чтобы запустить компрессор, т.к. запуск требует больших энергозатрат. Сначала разберём маркировку, параметры и условное обозначение конденсаторов на схеме.

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме ясно из рисунка, буквенное обозначение – С и порядковый номер на схеме.

Основные параметры конденсаторов

Ёмкость конденсатора – параметр, который обозначает, какую энергию способен накопить конденсатор, а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Используемые номиналы рабочих и пусковых конденсаторов 1 мкФ (μF) – 100 мкФ (μF), чаще всего в быту встречаются конденсаторы емкостью 35 мкФ (μF) – 75 мкФ (μF).

Номинальное напряжение конденсатора – суть напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры. Производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах, например:

  • 400 В – 10000 часов
  • 450 В – 5000 часов
  • 500 В – 1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку с помощью мультиметра:

– отключаем питание кондиционера;

– разряжаем конденсатор, путём закорачивания его выводов, например отверткой;

– снимаем клемму (любую);

– устанавливаем прибор на измерение ёмкости конденсаторов;

– соединяем щупы к выводам конденсатора;

– считываем значение ёмкости.

Щупы на приборе нужно установить в гнёзда для измерения конденсаторов, com – common, общий, туда вставляем один из щупов, второй в гнездо с графическим обозначением конденсатора или буквенным – Сx

Ручку переключателя режимов ставим в режим измерения ёмкости конденсаторов. На корпусе конденсатора считываем значение его ёмкости и ставим заведомо больший предел измерения на приборе, например, номинал 30 мкФ (μF), а мы на приборе ставим 200 мкФ (μF). На втором фото – прибор с автоматическим выбором предела измерений.

После подсоединения щупов к выводам конденсатора ждём показаний на экране, например, время измерения ёмкости 40 мкФ (μF) первым прибором – менее одной секунды, вторым – более одной минуты, так что следует ждать.

Читайте также:
Обзор центральных кондиционеров: секционные и каркасно-панельные

Если замеренный параметр не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс “+” и минус “-” и их можно подключить как угодно.

ВНИМАНИЕ! Запрещается применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе).

Для этих целей выпускаются неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным (НЕ ПОСЛЕДОВАТЕЛЬНЫМ. ) соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов: Собщ12+. Сп . То есть, если соединить два конденсатора по 35 мкФ (μF), получим общую ёмкость 70 мкФ (μF), напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Калькулятор расчета емкости рабочего и пускового конденсаторов

При подключении асинхронного электродвигателя в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз на обмотках статора, чтобы сделать имитацию вращающегося магнитного поля (ВМП), которое заставляет вращаться вал ротора двигателя при подключению его в «родные» трехфазные сети переменного тока. Известная многим, кто знаком с электротехникой, способность конденсатора давать электрическому току «фору» на π/2=90° по сравнению с напряжением, оказывает хорошую услугу, так как это создает необходимый момент, заставляющий вращаться ротор в уже «не родных» сетях.

Калькулятор расчета рабочего и пускового конденсаторов

Но конденсатор для этих целей необходимо подбирать, причем нужно делать с высокой точностью. Именно поэтому читателям нашего портала предоставляется в абсолютное безвозмездное пользование калькулятор расчета емкости рабочего и пускового конденсатора. После калькулятора будут даны необходимые разъяснения по всем его пунктам.

Калькулятор расчета емкости рабочего и пускового конденсаторов

Для расчета использовались следующие зависимости:

Способ подключения обмоток и схема подключения рабочего и пускового конденсаторов Формула
Подключение «Звездой» Емкость рабочего конденсатора – Ср
Cр=2800*I/U; I=P/(√3*U*η*cosϕ); Cр=2800*P/(/(√3*U²*η*cosϕ).
Подключение «Треугольником» Емкость рабочего конденсатора – Cp
Cр=4800*P/(/(√3*U²*η*cosϕ).
Емкость пускового конденсатора при любом способе подключения Cп=2,5*Cр
Расшифровка обозначений в формулах: Cр – емкость рабочего конденсатора в микрофарадах (мкф); Cп – емкость пускового конденсатора в мкф; I – ток в амперах (А); U – напряжение сети в вольтах (В); η – КПД двигателя, выраженный в процентах, деленных на 100; cosϕ – коэффициент мощности.

Полученные из калькулятора данные можно использовать для подбора конденсаторов, но именно таких номиналов, как будет рассчитано, их вряд ли можно будет найти. Только в редких исключениях могут быть совпадения. Правила подбора такие:

  • Если есть «точное попадание» в номинал емкости, который существует у нужной серии конденсаторов, то можно выбирать именно такой.
  • Если нет «попадания», то выбирают емкость, стоящую ниже по ряду номиналов. Выше не рекомендуется, особенно для рабочих конденсаторов, так как это может привести к ненужному возрастанию рабочих токов и перегреву обмоток, которое может привести к межвитковому замыканию.
  • По напряжению конденсаторы выбираются номиналом не менее, чем в 1,5 раза больше, чем напряжение в сети, так как в момент пуска напряжение на выводах конденсаторов всегда повышенное. Для однофазного напряжения в 220 В рабочее напряжение конденсатора должно быть не менее 360 В, но опытные электрики всегда советуют использовать 400 или 450 В, так как запас, как известно, «карман не тянет».

Приведем таблицу с номиналами конденсаторов рабочих и пусковых. В качестве примера приведены конденсаторы серий CBB60 и CBB65. Это полипропиленовые пленочные конденсаторы, которые наиболее часто применяют в схемах подключения асинхронных двигателей. Серия CBB65 отличается от CBB60, тем, что они помещены в металлический корпус.

В качестве пусковых применяют электролитические неполярные конденсаторы CD60. Их не рекомендуются применять в качестве рабочих так как продолжительное время их работы делает их жизнь менее продолжительной.. В принципе, для пуска подходят и CBB60, и CBB65, но они имеют при равных емкостях более объемные габариты, чем CD60. В таблице приведем примеры только тех конденсаторов, которые рекомендованы к использованию в схемах подключения электродвигателей.

Полипропиленовые пленочные конденсаторы CBB60 (российский аналог К78-17) и CBB65 Электролитические неполярные конденсаторы CD60
Изображение
Номинальное рабочее напряжение, В 400; 450; 630 В 220—275; 300; 450 В
Емкость, мкф 1,5; 2,0;2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 мкф 5,0; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500 мкф

Для того, чтобы «набрать» нужную емкость, можно использовать два и более конденсатора, но при разном соединении результирующая емкость будет отличаться. При параллельном соединении она будет складываться, а при последовательном — емкость будет меньше любого из конденсаторов. Тем не менее такое соединение иногда используют для того, чтобы, соединив два конденсатора на меньшее рабочее напряжение, получить конденсатор, у которого рабочее напряжение будет суммой двух соединяемых. Например, соединив два конденсатора на 150 мкф и 250 В последовательно, получим результирующую емкость 75 мкф и рабочее напряжение 500 В.

Последовательное и параллельное соединение конденсаторов

Для того чтобы рассчитать емкость двух последовательно соединенных конденсаторов, читателям предоставляется простой калькулятор, где надо просто выбрать два конденсатора из ряда существующих номиналов.

Калькулятор расчета результирующей емкости двух последовательно соединенных конденсаторов

Возможно ли самому подключить трехфазный асинхронный двигатель в сеть 220 В?

Обычно эту операцию доверяют только электрикам, имеющим практический опыт. Однако, подключить двигатель можно и самому. Это доказывает статья нашего портала: «Как подключить трехфазный двигатель в сеть 220 В».

Назначение и подключение пусковых конденсаторов для электродвигателей

Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.

  • Назначение и преимущества ↓
  • Схемы подключения ↓
  • Выбор пускового конденсатора для электродвигателя ↓
  • Обзор моделей ↓
  • Советы ↓

Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?

Все конденсаторы, в том числе и пусковые, имеют следующие особенности:

  1. В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
  2. Большая емкость при малых габаритных размерах – особенность полярных накопителей.
  3. Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.

Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.

Назначение и преимущества

Используются конденсаторы рассматриваемого типа в системе подключения асинхронного двигателя. В данном случае, он работает только на момент пуска, до набора рабочей скорости.

Наличие подобного элемента в системе определяет следующее:

  1. Пусковая емкость позволяет приблизить состояние электрического поля к круговому.
  2. Проводится значительное повышение показателя магнитного потока.
  3. Повышается пусковой момент, значительно улучшается работа двигателя.

Без наличия этого элемента в системе, срок службы двигателя значительно уменьшается. Это связано с тем, что сложный пуск приводит к определенным сложностям.

Преимущества сети, которая имеет подобный элемент, заключаются в следующем:

  1. Более простой пуск двигателя.
  2. Срок службы двигателя значительно больше.

Пусковой конденсатор работает на протяжении нескольких секунд на момент старта двигателя.

Схемы подключения

схема подключения электродвигателя с пусковым конденсатором

Большее распространение получила схема, которая имеет в сети пусковой конденсатор.

Данная схема имеет определенные нюансы:

  1. Пусковая обмоткаи конденсатор включаются на момент старта двигателя.
  2. Дополнительная обмотка работает небольшое время.
  3. Термореле включается в цепь для защиты от перегрева дополнительной обмотки.

При необходимости обеспечения высокого момента во время пуска, в цепь включается пусковой конденсатор, который подключается вместе с рабочим. Стоит отметить, что довольно часто его емкость определяется опытным путем для достижения наибольшего пускового момента. При этом, согласно проведенным измерениям, величина его емкости должна быть в 2-3 раза больше.

К основным моментам создания цепи питания электродвигателя, можно отнести следующее:

  1. От источника тока, 1 ветка идет на рабочий конденсатор. Он работает на протяжении всего времени, поэтому и получил подобное название.
  2. Перед ним есть разветвление, которое идет на выключатель. Кроме выключателя может использоваться и другой элемент, который проводит пуск двигателя.
  3. После выключателя устанавливается пусковой конденсатор. Он срабатывает в течение нескольких секунд, пока ротор не наберет обороты.
  4. Оба конденсатора идут к двигателю.

Подобным образом можно провести подключение однофазного электродвигателя.

Выбор пускового конденсатора для электродвигателя

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Обзор моделей

Существует несколько популярных моделей, которые можно встретить в продаже.

Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:

  1. Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
  2. Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
  3. Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.

Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.

Конденсатор для электродвигателя: как выбрать и пользоваться, расчет емкости для пускового и рабочего, подключение и эксплуатация

Многие владельцы довольно часто оказываются в ситуации, когда требуется подключить в гараже или на даче такое устройство, как трехфазный асинхронный двигатель к различному оборудованию, в качестве которого может выступать наждачный или сверлильный станок. При этом возникает проблема, поскольку источник рассчитан на однофазное напряжение. Что же здесь делать? На самом деле эту проблему решить довольно легко путем подключения агрегата по схемам, используемым для конденсаторных. Чтобы реализовать этот замысел, потребуются рабочее и пусковое устройство, часто именуемые как фазосдвигающие.

Выбор ёмкости

Для обеспечения правильной работы электродвигателя нужно рассчитать определённые параметры.

Для рабочего конденсатора

Чтобы подобрать эффективную емкость устройства, необходимо выполнить расчеты по формуле:

  • I1 – номинальный показатель тока статора, для измерения которого применяют специальные клещи;
  • Uсети – напряжение сети с одной фазой, (В).

После выполнения расчетов получится емкость рабочего конденсатора в мкФ.

Возможно для кого-то будет затруднительно рассчитать этот параметр по приведенной выше формуле. Однако в этом случае можно воспользоваться и другой схемой расчета емкости, где не нужно проводить столь сложных операций. Этот метод позволяет достаточно просто определить необходимый параметр на основании только мощности асинхронного двигателя.

Здесь достаточно помнить о том, что 100 Ватт мощности трехфазного агрегата должно соответствовать около 7 мкФ емкости рабочего конденсатора.

При расчётах нужно следить за током, который поступает на фазную обмотку статора в выбранном режиме. Недопустимым считается, если ток имеет большее значение, нежели номинальный показатель.

Для пускового конденсатора

Бывают ситуации, когда электродвигатель приходится включать в условиях большой нагрузки на валу. Тогда одного рабочего конденсатора будет недостаточно, поэтому к нему придется добавить пусковой конденсатор. Особенностью его работы является то, что он будет работать лишь в период пуска аппарата не более 3 секунд, чего используется ключ SA. Когда же ротор выйдет на уровень номинальной частоты вращения, прибор отключается.

Если по недосмотру владелец оставил включенными пусковые устройства, это приведет к образованию существенного перекоса по токам в фазах. В таких ситуациях высока вероятность перегрева двигателя. При определении емкости следует исходить из того, что величина этого параметра должна в 2,5-3 раза превосходить емкость рабочего конденсатора. Действуя подобным образом, можно добиться того, что пусковой момент двигателя достигает номинального показателя, в результате чего во время его запуска не возникает осложнений.

Для создания требуемой емкости конденсаторы могут подключаться по параллельной и последовательной схеме. Следует иметь в виду эксплуатация трехфазных агрегатов мощностью не более 1 кВт допускается в том случае, если их подключение осуществляется к однофазной сети при наличии исправного устройства. Причем здесь можно обойтись и без пускового конденсатора.

После расчетов нужно определить, какой тип конденсатора может использоваться для выбранной схемы

Наилучший вариант, когда применяется аналогичный тип для обоих конденсаторов. Обычно работу трехфазного двигателя обеспечивают бумажные пусковые конденсаторы, облаченные в стальной герметичный корпус типа МПГО, МБГП, КБП или МБГО.

Большая часть этих устройств выполнена в виде прямоугольника. Если взглянуть на корпус, то там приведены их характеристики:

  • Емкость (мкФ);
  • Рабочее напряжение (В).

Применение электролитических устройств

Используя бумажные пусковые конденсаторы, нужно помнить о следующем негативном моменте: они имеют довольно большие размеры, обеспечивая при этом небольшую емкость. По этой причине для эффективной работы трехфазного двигателя небольшой мощности приходится использовать достаточно большое количество конденсаторов. При желании бумажные можно заменить и электролитическими. В этом случае их необходимо подключать несколько иным способом, где обязательно должны присутствовать дополнительные элементы, представленные диодами и резисторами.

Однако специалисты не советуют использовать электролитические пусковые конденсаторы. Это связано с наличием у них серьезного недостатка, который проявляется в следующем: если диод не справится со своей задачей, на устройство начнет продаваться переменный ток, а это уже чревато его нагревом и последующим взрывом.

Другая причина состоит в том, что сегодня на рынке можно встретить улучшенные с металлизированным покрытием полипропиленовые пусковые модели переменного тока типа СВВ.

Чаще всего они рассчитаны на работу с напряжением 400-450 В. Как раз им и следует отдать предпочтение, учитывая, что они неоднократно показывали себя с хорошей стороны.

Напряжение

Рассматривая различные типы пусковых выпрямителей трехфазного двигателя, подключаемого к однофазной сети, следует принимать во внимание и такой параметр, как рабочее напряжение.

Ошибкой будет использование выпрямителя, показатель напряжения которого превышает на порядок требуемый. Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов.

В то же время не стоит рассматривать модели, в которых напряжение имеет меньший показатель, нежели напряжение сети. Устройства с такими характеристиками не смогут эффективно выполнять свои функции и довольно скоро выйдут из строя.

Чтобы свести к не ошибиться при выборе рабочего напряжения , следует придерживаться следующей схемы расчета: итоговый параметр должен соответствовать произведению фактического напряжения сети и коэффициента 1,15, при этом расчетное значение должно составлять не менее 300 В.

В том случае, если выбираются бумажные выпрямители для работы в сети переменного напряжения, то их рабочее напряжение нужно разделить на 1,5-2. Поэтому рабочее напряжение для бумажного конденсатора, для которого производитель указал напряжение в 180 В, в условиях работы в сети переменного тока составит 90-120 В.

Дабы понять, как на практике реализуется идея подключение трехфазного электродвигателя к однофазной сети, выполним эксперимент с использованием агрегата АОЛ 22-4 мощностью 400 (Вт) . Главная задача, которая должна быть решена – запуск двигателя от однофазной сети с напряжением 220 В.

Используемый электродвигатель имеет следующие характеристики:

  • показатель мощности вчера– 400 кВт;
  • напряжение сети 220В переменного напряжения;
  • Ток, все характеристики которого были определены при помощи электроизмерительных клещей в трехфазном режиме работы– 1,9А;
  • Схема подключения обмоток «звезда».

Помня о том, что используемый электродвигатель имеет небольшую мощность, при подключении его к однофазной сети можно купить лишь рабочий конденсатор.

Расчет емкости рабочего выпрямителя:

Пользуясь приведенными формулами, возьмем за среднее значение емкости рабочего выпрямителя показатель 25 мкФ. Здесь была выбрана несколько большая емкость, равная 10 мкФ. Так мы попытаемся выяснить, как влияет такое изменение на пуск аппарата.

Теперь нам необходимо купить выпрямители, в качестве последних будут использоваться конденсаторы типа МБГО. Далее на основе подготовленных выпрямителей выполняется сборка требуемой емкости.

В процессе работы следует помнить, что каждый такой выпрямитель имеет емкость 10 мкФ.

Если взять два конденсатора и соединить их друг с другом по параллельной схеме, то итоговая емкость составит 20 мкФ. При этом показатель рабочего напряжения будет равен 160В. Для достижения требуемого уровня в 320 В необходимо взять эти два выпрямитель и подключить их еще к такой же паре, конденсаторов, соединенных параллельно, но уже применив последовательную схему. В итоге суммарная емкость составит 10 мкФ. Когда батарея рабочих конденсаторов будет готова, подключаем ее к двигателю. Далее останется только запустить его в однофазной сети.

В процессе проведенного эксперимента с подключением двигателя к однофазной сети работа потребовала меньше времени и сил. Используя подобный агрегат с выбранной батареей выпрямителей, следует учесть, что его полезная мощность будет находиться на уровне до 70-80 % от номинальной мощности, при этом частота вращения ротора будет соответствовать номинальному показателю.

Важно: если используемый двигатель рассчитан на сеть напряжением 380/220 В, то при подключении к сети следует использовать схему «треугольник».

Обращайте внимание на содержание бирки: бывает так, что там приведено изображение звезды с напряжением 380 В. В этом случае правильную работу двигателя в сети можно обеспечить, выполнив следующие условия. Сперва придется «распотрошить» общую звезду, после чего соединить с клеммником 6 концов. Искать общую точку следует в лобовой части двигателя.

Видео: подключение однофазного двигателя в однофазную сеть

Решение об использовании пускового конденсатора следует принимать исходя из конкретных условий, чаще всего оказывается достаточно рабочего. Однако если используемый двигатель подвергается повышенной нагрузке, то эксплуатацию рекомендуется остановить. В этом случае необходимо правильно определить необходимую емкость устройства, чтобы обеспечить эффективную работу агрегата.

Конденсаторы пусковые

2. Для чего нужен пусковой конденсатор

Основное предназначение пускового конденсатора заключается в получении магнитного поля, необходимого для повышения пускового момента электродвигателя, а также для соединения с обмотками асинхронных электродвигателей, питающихся от однофазной сети частотой 50-60Гц и для перевода трехфазных двигателей на питание от однофазной сети.

Пусковым, конденсатор называют потому, что он применяется для выравнивания крутящего момента при запуске электродвигателя. В момент старта электродвигателя, пусковой ток резко возрастает, а крутящий момент в то же время растет с отставанием. Именно в этот момент на двигатель действует наибольшая нагрузка и если не использовать пусковой конденсатор, то нарастающая электрическая энергия выведет из строя обмотку двигателя.

Пусковой конденсатор позволяет реактивной энергии уходить из обмотки двигателя и накапливаться в этой ёмкости до того времени, пока двигатель не выйдет на рабочую частоту и мощность.

Пусковые конденсаторы применяются в компрессорах, насосах, стиральных машинах, холодильниках, стартерах, кондиционерах, сплит системах и в другом оборудовании, где необходима компенсация реактивных токов.

3. В чем отличие пускового и рабочего конденсатора

Для запуска и работы асинхронных двигателей в однофазной цепи переменного тока используют пусковые и рабочие конденсаторы.

Пусковой конденсатор предназначен для кратковременной работы – в момент запуска двигателя. После выхода двигателя на рабочую частоту и мощность, пусковой конденсатор отключают и мотор работает за счет сдвига фаз в рабочих обмотках. Следовательно, время работы пускового конденсатора должно быть очень коротким, около 3 секунд, так как длительное время работы пускового конденсатора, может привести к его дополнительному перегреву и электродвигателя в целом, что чревато выходом из строя элементов схемы.

Это необходимо для тех двигателей, схема работы которых, предусматривает данный режим запуска. Для остальных двигателей, только в тех случаях, когда в момент запуска, присутствует нагрузка на валу, препятствующая свободному вращению ротора.

Рабочий конденсатор рассчитан на большое количество часов наработки и подключен к цепи все время, выполняет функцию фазосдвигающей цепи для обмоток электродвигателя. В связи с тем, что конденсатор и обмотка электродвигателя создают колебательный контур, в момент перехода из одной фазы цикла в другую на конденсаторе возникает повышенное напряжение, превышающее напряжение питания. Это необходимо учитывать при выборе рабочего конденсатора.

Рабочий конденсатор Пусковой конденсатор
Применение В цепи рабочих обмоток асинхронного двигателя В пусковой цепи
Выполняемые функции Создание вращающегося электромагнитного поля для работы электродвигателя Сдвиг фаз между пусковой и рабочей обмоткой, запуск двигателя под нагрузкой
Подключение Последовательно со вспомогательной обмоткой электродвигателя Параллельно рабочему конденсатору
Время работы Постоянно При старте до выхода скорости вращения двигателя на нужный режим
Ёмкость На каждые 100Вт мощности электродвигателя требуется около 6-7 мкФ На каждые 100Вт мощности электродвигателя требуется около 12-18 мкФ
Напряжение 1,15*Uном 2…3 * Uном
Тип конденсатора CBB60, CBB61, CBB65, CD60, МБГО, МБГЧ, МБГВ и подобные с напряжением в 1,15 раз выше напряжение питания CBB60, CBB61, CBB65, CD60, МБГО, МБГЧ, МБГВ и подобные с напряжением в 2-3 раза выше напряжение питания

4. Подключение трехфазного электродвигателя в однофазную сеть “звездой” и “треугольником”

Основными схемами подключения трёхфазного двигателя в однофазную сеть являются “звезда” и “треугольник“.

Для подключения пускового конденсатора к асинхронному двигателю используется кнопка, которая коммутирует пусковой конденсатор на время, необходимое для выхода электродвигателя на необходимую мощность и обороты.

Рабочий же конденсатор постоянно подключен к электросхеме двигателя и не нуждается в отключении.

5. Типы конденсаторов, сравнение серий конденсаторов, какие бывают

Наиболее распространённые серии пусковых конденсаторов: CBB60, CBB61, CBB65, CD60, МБГО, МБГЧ, МБГВ.

Отличаются данные серии по типу диэлектрика (полипропиленовый, металлобумажный), форме и материалу корпуса (прямоугольный или цилиндрический корпус, металлический или пластиковый), номинальному ряду ёмкостей и напряжений.

Тип Характеристика Корпус Ёмкость, мкФ Рабочее напряжение, В Откло­нение ёмкости Тангенс угла потерь, макс Сопротив­ление изоляции между выводами,
МОм·мкФ
CBB60 металлопропиленовый герметизированный цилиндрический пластиковый 1 – 150 мкФ 450, 630 В ±5% 0,002 3000
CBB61 металлопропиленовый герметизированный прямоугольный пластиковый 1 – 50 мкФ 450, 630 В ±5% 0,002 3000
CBB65 металлопропиленовый герметизированный цилиндрический металлический 4 – 150 мкФ 450, 630 В ±5% 0,002 3000
CD60 электролитический герметизированный цилиндрический металлический 50 – 1500 мкФ 220 – 450 В ±5%
±10%
±20%
0,15 3000
МБГО металлобумажный герметизированный однослойный прямоугольный металлический 0,25 – 30 мкФ 160 – 630 В ±10%
±20%
0,025 240;
60
МБГП*
(КМБГ)*
металлобумажный герметизированный однослойный прямоугольный металлический 0,1 – 30 мкФ 160 – 1500 В ±10%
±20%
0,025 240;
60
МБГТ* то же, термостойкий прямоугольный металлический 0,1 – 20 мкФ 160 – 1000 В ±10%
±20%
0,025 240;
60
МБГЧ то же, для повышенных частот прямоугольный металлический 0,25 – 10 мкФ 250 – 1000 В ±10%
±20%
0,025 240;
60
МБГВ то же, высокоёмкостный прямоугольный металлический 60 – 200 мкФ 500, 1000 В ±5%
±10%
0,025 240;
60

В целом, металлобумажные конденсаторы имеют лишь одно преимущество – они лучше переносят кратковременные токовые перегрузки. Но на 100% можно утверждать, что полипропиленовые конденсаторы также надёжно отрабатывают свою задачу и с каждым днём всё больше набирают свою популярность. Эта технология позволяет накапливать заряд в меньшем объёме и за гораздо меньшие деньги. В связи с этим полипропиленовые пусковые конденсаторы чаще применяются в оборудовании в качестве альтернативы металлобумажным благодаря достойному качеству, лучшим характеристикам и более низкой цене.

6. Как подобрать ёмкость конденсатора для электродвигателя (+калькулятор)

Пусковые и рабочие конденсаторы для электродвигателей подбирают исходя из необходимой ёмкости и номинального напряжения. С помощью онлайн-калькулятора можно произвести расчет ёмкости пускового и рабочего конденсатора для трехфазных электродвигателей при соединении обмоток двигателя по схеме “звезда” или “треугольник” и его подключении в однофазную сеть.

При подборе ёмкости рабочего конденсатора рекомендуется использовать не один рабочий конденсатор большой ёмкости, а несколько менее ёмких конденсаторов, соединенных параллельно. Подбор ёмкости достигается параллельным подключением или отключением дополнительных конденсаторов, (общая ёмкость при этом равна сумме ёмкостей подключенных конденсаторов).

Номинальное напряжение пускового конденсатора нужно выбирать так, чтобы в процессе работы рабочее напряжение не превышало параметры конденсатора более, чем на 10%.

Как показывает практика, на каждые 100Вт мощности электродвигателя требуется около 6-7 мкФ. При правильно подобранном конденсаторе мощность трехфазного двигателя, включенного в однофазную сеть не должна уменьшиться более, чем на 30%.

Напряжение рабочего конденсатора для подключения к асинхронному электродвигателю необходимо выбирать с учетом коэффициента 1,15, т.е. для сети 220В рабочее напряжение конденсатора должно быть 220*1,15= 250В.

Для подключения пускового конденсатора к асинхронному электродвигателю в расчетах напряжения берут коэффициент от 2 до 3. Для сети 220В напряжение пускового конденсатора должно быть 400-500 В. Это обеспечит необходимый запас по напряжению в процессе работы.

7. Рекомендации по подключению

Перед подключением конденсаторов следует удостовериться в отсутствии накопленного заряда. Поскольку конденсатор сохраняет накопленный заряд длительное время, то после каждого отключения необходимо проводить его разряд. У некоторых конденсаторов конструктивно предусмотрено наличие встроенного разрядного резистора. Сопротивление разрядного резистора подбирается так, чтобы по истечении 50 секунд полностью снять остаточное напряжение с конденсатора.

Для предотвращения случайного прикосновения к токоведущим частям, находящихся под напряжением, их следует изолировать с помощью кожуха или ограждения. Корпус конденсаторов необходимо надежно закрепить – в процессе эксплуатации под воздействием вибраций и сотрясений возможно смещение конденсаторов и попадание их в рабочие устройство.

Напряжение 220В является опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих устройства, применение схем включения должен проводить специалист.

8. Видео: Конденсаторы пусковые и рабочие – обзор, популярные серии

Конденсатор кондиционера

Конденсатор кондиционера

Пусковые и рабочие конденсаторы кондиционера применяются для улучшения пусковых и рабочих характеристик электродвигателей компрессоров и вентиляторов.

Производители оборудования сами определяют характеристики и размеры конденсаторов. При замене неисправных конденсаторов на новые, безусловно, необходимо учитывать их рекомендации.

Пусковой конденсатор используется в пусковой цепи электродвигателя и рассчитан лишь на кратковременную работу. По сравнению с пусковым рабочий конденсатор постоянно включен в рабочую цепь. Он не только повышает коэффициент полезного действия, но и создает необходимый рабочий момент для пуска электродвигателя с постоянно расщепленной фазой.

На схеме обозначены: L1 — рабочая обмотка, L2 — пусковая обмотка, Ср — конденсатор рабочий, Сп — конденсатор пусковой, В — центробежный выключатель.

Для проверки конденсаторов, как правило, используется омметр с возможностью измерения емкости. Отсоедините токоподводящие провода от клемм конденсатора. И только после этого приложите щупы омметра к клеммам, как показано на рисунке. Проследите за отклонением стрелки, выбрав максимальный диапазон измерения сопротивления на мультиметре. При исправности конденсатора стрелка должна сначала резко отклониться, а затем постепенно вернуться в свою первоначальную позицию. У конденсаторов разной емкости угол и продолжительность отклонения стрелки отличаются друг от друга.

Если емкость конденсатора имеет отклонение от номинала более, чем на + / — 5%, то его необходимо заменить на новый аналогичной емкости.

Предлагаем и есть в наличии конденсаторы различной емкости для электродвигателей кондиционера.

Пусковые и рабочие конденсаторы компрессора в зависимости от его мощности имеют емкость 20 мкФ, 25 мкФ, 30 мкФ, 35 мкФ, 40 мкФ, 45 мкФ, 50 мкФ.

Пусковые конденсаторы двигателя вентилятора в зависимости от его мощности имеют емкость 1 мкФ, 1,2 мкФ, 1,5 мкФ, 2 мкФ, 4 мкФ, 6 мкФ.

Для кондиционеров могут применяться специальные сдвоенные конденсаторы с тремя выводами. В кондиционерах LG, например, используются сдвоенные конденсаторы емкостью 30/1.5 мкФ или 45/6 мкФ 450VAC. То есть, один конденсатор используется не только для компрессора, но и для двигателя вентилятора внешнего блока.

Маркировка конденсаторов для кондиционеров

Обозначение выводов конденсатора двойной емкости:
С (Common Connection) – общий вывод,
HERM (Hermetically Sealed Compressor) – подключение рабочей обмотки компрессора,
FAN (Fan Condenser) – подключение двигателя вентилятора.

Конденсатор электродвигателя

Конденсаторы К78-98 используются в качестве не только пусковых, но и рабочих в схемах управления однофазными асинхронными двигателями с целью создания вращающего магнитного поля. Причем, не только для однофазных, но и для трехфазных при включении в однофазную сеть. Диапазон номинальной емкости составляет от 1,5 до 100 мкФ.

Конденсаторы CBB65 – металлизированные полипропиленовые пленочные конденсаторы постоянной ёмкости в герметизированном цилиндрическом корпусе. Они способны накапливать заряд от 4 до 150 мкФ при рабочем напряжении переменного тока 450 В. Конденсатор CBB65 может применяться не только как пусковой, но и в качестве рабочего. Предельное допустимое отклонение ёмкости ±5%.

Конденсаторы CBB65 нашли применение при запуске (фазосдвигающие конденсаторы) и работе асинхронных электродвигателей. Область их применения широка. Не только для компрессоров холодильного оборудования, но и в системах кондиционирования воздуха (конденсаторы для кондиционеров). А также, в вентиляционных системах, различных машинах и агрегатах промышленного типа.

Перед подключением конденсаторов необходимо удостоверится в отсутствии накопленного заряда, а в дальнейшем использовать разрядный резистор.

Весь процесс производства конденсаторов, как правило, полностью автоматизированный. Работа ведется на высококачественном точном и уникальном оборудовании ведущих зарубежных компаний. Конденсаторы изготавливаются из полипропиленовой металлизированной пленки (Al + Zn) с крепленным краем. Конструкция конденсатора обладает способностью самовосстановления при электрическом пробое диэлектрика. Это сохраняет неизменными его параметры (емкость, тангенс угла потерь) даже при продолжительном использовании конденсаторов. Благодаря крепленому краю, обеспечивается хороший контакт с напыленным слоем на торце секции.

На производстве конденсаторы проходят обязательную операцию заливки компаундом, соответствующим классу пожаробезопасности V1 стандарта UL94. После сборки не только 100%-ный электронный контроль качества по емкости, но и по тангенсу угла потерь и электрической прочности.

Каталог конденсаторов для кондиционеров

Если требуется ремонт кондиционера с заменой компрессора — это к нам!

Калькулятор расчета емкости рабочего и пускового конденсатора

Время чтения: 2 минуты Нет времени?

Отправим материал вам на e-mail

Когда асинхронный двигатель подключается в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз в обмотках статора, имитирующий вращающееся магнитное поле. Это и приводит к вращению вала ротора электродвигателя, как в «родных» трехфазных сетях переменного тока. Для достижения этой цели в «не родных сетях» и служит конденсатор.

Подключение конденсатора к электродвигателю

Подбирать конденсатор следует очень внимательно, поэтому специально для читателей нашего онлайн-журнала был разработан удобный калькулятор с необходимыми пояснениями.

Калькулятор расчета емкости рабочего и пускового конденсатора

Пояснения к расчету

Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:

Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:

  • если расчетное значение точно попало в существующий номинал, то в этом случае повезло – берете именно такой.
  • если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
  • По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.

Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.

Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65 Электролитические неполярные конденсаторы серии CD60
Изображение
Номинальное рабочее напряжение, В 400; 450; 630 220-275; 300; 450
Номинальный ряд, мкФ 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 5; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.

Калькулятор расчета результирующей емкости двух последовательно соединенных конденсатора

Экономьте время: отборные статьи каждую неделю по почте

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: