Управление системой отопления дома разными способами

Обзор способов организации управления отоплением: программаторы, контроль через интернет и СМС оповещения

Отопительная система любого типа в обязательном порядке должна содержать управляющие компоненты. Это могут быть простые механические устройства, стабилизирующие давление и температуру. Но они малоэффективны для автоматизации теплоснабжения. Поэтому рекомендуется рассмотреть управление системой отопления дома разными способами: с помощью электронных контроллеров и специализированных аппаратных средств.

  1. Принципы организации «умного» отопления
  2. Программаторы и терморегуляторы – основные элементы управления отоплением
  3. Модули для дистанционного контроля теплоснабжения
  4. GSM блок управления котлом
  5. Контроль отопления через интернет
  6. Советы по организации дистанционного управления отоплением
  7. Управление централизованным отоплением

Принципы организации «умного» отопления

Общая схема управления отоплением

Современный блок управления отоплением дома – это сложный электронный комплекс, соединенный в единую сеть со всеми компонентами системы. Он выполняет регулировку их параметров с помощью встроенных блоков контроля.

Для того чтобы система управления отоплением дома была по-настоящему эффективной необходимо правильно подобрать ее элементы. Они характеризуются набором опций и возможностью организации трехсторонней связи между пользователем, электронным блоком контроля и отопительными компонентами.

Что нужно учитывать при выборе конкретной системы контроля? Существует несколько основополагающих параметров, которые характеризуют любое управление отоплением:

  • Возможность подключения к электронным блокам котла электрических термостатов, датчиков температуры и давления;
  • Гибкость настройки. Так, система Arduino управления отоплением имеет открытый программный код, что дает возможность адаптировать ее для конкретного автономного теплоснабжения;
  • Изменение текущих значений отопления в зависимости от внешних факторов – температуры в помещении на улице, возникновение аварийной ситуации, отсутствие теплоносителя;
  • Установленное дистанционное управление отоплением для удаленного изменения параметров в системе.

Правильно составленная схема узла управления системы отопления имеет централизованный характер. Т.е. на ответственных участках магистрали, котле и радиаторах отопления останавливаются управляющие элементы – терморегуляторы, контроллеры. Они же подключаются к единому управляющему узлу. Он называется программатором или устройством для контроля работы теплоснабжения.

Для создания эффективной системы управления у котла должен быть электронный блок работы, который содержит клеммы для подключения к внешнему программатору.

Программаторы и терморегуляторы – основные элементы управления отоплением

Для организации автономного теплоснабжения понадобятся электронные устройства. Они могут иметь пульт управления котлом отопления, возможность одновременного изменения паромеров в нескольких подключаемых компонентах.

Эти устройства называются программаторами или электронными терморегуляторами. Как и другие аналогичные приборы, они могут иметь управление отоплением по СМС или интернет. Но это лишь дополнительные функции. Для выбора оптимальной модели необходимо знать основные функциональные качества программатора:

  • Число подключаемых контуров. Может варьировать от 1-го до 12. Дополнительно устанавливается модуль для увеличения количества разъемов;
  • Режимы работы системы. В зависимости от настроек можно устанавливать управление радиаторами отопления в экономичном режиме, нормальном и комфортном;
  • Подключаемый модуль — управление отоплением по телефону. GSM станция передает требуемую информацию через СМС — температуру теплоносителя, оповещение об аварийном режиме и т.д.;
  • Наличие радиопередатчиков для создания беспроводных каналов связи между подключаемыми компонентами отопления.

В совокупности установленное оборудование называется рамка управления отоплением. Она может состоять из компонентов с различным функционалом. Одинаковым остается назначение – возможность автоматического или полуавтоматического изменения параметров теплоснабжения.

Подключение программатора к котлу

Но помимо локальных устройств есть и зональные, устанавливаемые на конкретные компоненты — котлы, радиаторы. Осуществляя управление отоплением через интернет с помощью этих приборов, можно регулировать степень нагрева воды в системе, температурный режим в конкретной батарее. Зачастую такие устройства называют не программаторами, а электронными терморегуляторами.

Они отличаются более доступной стоимостью и простотой монтажа. Для терморегуляторов не нужен шкаф управления отоплением, что снижает трудоемкость обустройства. В некоторых случаях возможно подключение нескольких терморегуляторов к единому блоку управления.

Что нужно учитывать при составлении бюджета «умного» отопления? Помимо стоимости управляющего элемента нужно знать ориентировочную цену на расходные материалы – коммуникационные провода, щит управления отоплением. Последний необходим при установке системы из нескольких блоков – программатора, GSM модуля, расширительных планок для дополнительных контакторов.

Модель Назначение Стоимость, руб.
Computherm Q3 Проводной терморегулятор 1625
Computherm Q3 RF Беспроводной терморегулятор 3367
PROTHERM Kromschroder E8.4401 Программатор. Управление 4-мя котлами, ГВС, 15 контурами отопления 34533
Щит управления отоплением УЗО, блоки контроля котла, подключение к датчикам температуры От 7000

Также важно учитывать месторасположение — ящик управления отоплением должен быть установлен в доступном месте. Не рекомендуется его монтаж в котельной, хотя по трудоемкости это самый простой вариант. Лучше всего выполнить монтаж в жилой комнате. Тогда будет возможность намного чаще контролировать и изменять параметры системы.

Модели программаторов отличаются количеством подключаемых компонентов системы. Они называются управляющими контурами.

Модули для дистанционного контроля теплоснабжения

Модули управления отоплением

Для организации системы управления отоплением дома необходимо позаботиться о возможности удаленного контроля. Обеспечить эту функцию помогут специальные модули. Чаще всего они не входят в стандартную комплектацию программаторов и терморегуляторов.

После приобретения блока управления отоплением дома следует правильно выбрать коммуникационное устройство. В зависимости от технических требований оно может обеспечивать следующие виды связи пользователя и управляющего элемента:

  • GSM контроль. Данные передаются с помощью сотовой связи. Фактически это стационарный телефон с функциями формирования, отправки, получения и обработки СМС сообщений;
  • Подключение через интернет. Характеризуется более расширенным функционалом и практически не ограничивается территориально. В этом случае пультом управления котлом отопления может быть планшет, ноутбук или любой ПК с установленным специальным программным комплексом.

Для этого программатор должен иметь гибкую настройку. Такой возможностью обладают системы Arduino, осуществляемые управление отоплением. Фактически они могут быть адаптированы для любой схемы, начиная от контроля работы вентиляции и заканчивая сложными производственными комплексами.

При выезде за границу не рекомендуется активировать роуминг для контроля отопления через GSM модуль. Это повлечет большие затраты. Лучше всего перепоручить контроль за теплоснабжением знакомому или родственнику.

GSM блок управления котлом

GSM блок передачи данных

Самый простой и относительно доступный способ контролировать работу котла – установка управления отоплением по СМС. Для этого приобретается отдельный блок, который подключается к программатору или терморегулятору. Некоторые модели уже имеют подобную функцию.

Читайте также:
Теплый пол Devi: конструкция, принцип работы, достоинства, особенности систем

На этапе выбора дистанционного управления отоплением следует определиться со способом передачи данных через сеть GSM. Это во многом зависит от возможностей конкретной модели телефона, а также встроенных функций блока передачи данных.

Проще всего можно получать сообщения в виде СМС. Установленный в рамку управления отоплением блок будет передавать следующие данные:

  • Падение температуры и давления ниже (выше) критического уровня;
  • Аварийный отказ в работе котла – отключение электропитания, отсутствие энергоносителя. При этом возможна передача кода ошибки и ее описания.

Блок со встроенным модулем СМС оповещений

Для обратного управления отоплением по телефону необходимо отправлять СМС определенного формата. С их помощью можно настраивать уровень температуры, инициировать запуск котла после аварийного отключения. Также во многих моделях встроена функция отсрочки команды. Т.е. передается значение какого-либо параметра, и указывается время активации котла для его достижения.

При этом важно помнить, что полученные данные могут расходиться с фактическими. Для эффективного управления радиаторами отопления необходимо знать степени погрешности следующих устройств:

  • Температурных датчиков. Показания большинства электронных моделей имеют погрешность ±0,5°С;
  • Шаг изменения температуры в терморегуляторе. Он может составлять от 0,2°С до 0,5°С.

На практике это действительно необходимо при установке отопления в режим анти замерзания, когда уровень нагрева теплоносителя поддерживается на уровне +5°С. Это позволяет сэкономить на затратах энергоносителя и при этом избежать аварийных ситуаций.

Для установки блока GSM не нужно приобретать специальный шкаф управления теплоснабжением. Управление этим устройством выполняется редко – поэтому можно ограничиться монтажом закрытого щита.

Контроль отопления через интернет

Получение данных об отоплении на смартфон

Управление отоплением через интернет имеет все плюсы, свойственные контролю теплоснабжения с помощью СМС сообщений. Однако возможность получать большее количество информации сказывается на качестве теплоснабжения.

Функции блока управления отоплением коттеджа при подключении к сети интернет имеют ряд преимуществ. Главным из них является возможность установки специальных программных комплексов. Они интегрируются в ноутбук, смартфон или любой другой вид персонального ПК. При этом дистанционное управление теплоснабжением отличается следующими возможностями:

  • Удобный интерфейс. Чаще всего он рассчитан под операционные системы смартфонов. Но при небольшой доработке может быть установлен и в компьютер;
  • Нет ограничения по количеству подключаемых пользователей, как в СМС блоках;
  • Возможность настройки параметров и любой точки, где есть интернет. В этом случае нет необходимости включать роуминг. Исключением составляют услуги интернет от мобильных операторов.

Важно правильно осуществить предварительную настройку пульта дистанционного управления котлом отопления. Для этого рекомендуется сначала сверить фактические показания системы после их изменения. Это необходимо для калибровки системы.

Некоторые модели интернет блоков, установленные в рамку управления отоплением, имеют ограничения по операционным системам. Чаще всего используется ОС Android или IOS.

Советы по организации дистанционного управления отоплением

Схема подключения модулей к блоку управления отоплением

В большинстве случаев можно сделать систему управления отоплением коттеджа самостоятельно. Это осуществимо только при правильном выборе компонентов системы. Т.е. сначала нужно проанализировать состояние и возможности уже установленного оборудования.

У классической схемы узла управления отопительной системой есть один блок контроля, который соединен со всеми элементами теплоснабжения. Программатор должен соответствовать следующим требованиям:

  • Количество подключаемых клемм и их конфигурация должна совпадать с аналогичными узлами коммуникации котла и терморегуляторов. В противном случае управление теплоснабжением по СМС будет невозможно. В случае надобности приобретаются адаптеры;
  • Максимальная удаленность пользователя от блока контроля. Если это расстояние не превышает 300 м – можно приобрести модели с рудоуправлением. Для увеличения площади связи рекомендуется пользоваться управлением отоплением по мобильному телефону или интернет;
  • Возможность самостоятельно (или с помощью специалистов) устанавливать дополнительные параметры работы. Это осуществляется с котроллером на базе плат управления отоплением;
  • Подключение блока автономного электропитания. Для этого необходим достаточно большой ящик управления системой отопления. Данный параметр учитывается при выборе места установки блока контроля в доме.

Не нужно забывать о возможности управления отопительными радиаторами. Это может осуществляться с помощью локальных устройств – механических терморегуляторов. Они имеют невысокую стоимость, но не могут быть подключены к общей электронной системе контроля.

Если отопление также выполняет функцию горячего теплоснабжения – необходимо, чтобы в программаторе была функция управления этим участком.

Управление централизованным отоплением

Блок управления отоплением в многоквартирном доме

Для централизованного теплоснабжения схема управления будет намного сложнее. Она может включать в себя несколько узлов – обустроенный шкаф контроля отоплением в центральной котельной, блок распределения теплоносителя в многоквартирном доме.

В этом случае управление отоплением через сеть интернет практически не используется. Исключения составляют счетчики учета тепла, которые передают показания расхода теплоносителя непосредственно в управляющую компанию.

В свою очередь, для потребителя не важно знать особенности обустройства управления отоплением. Каждый потребитель тепла в многоквартирном доме должен быть ознакомлен с нормами обеспечения теплоснабжением жилых зданий:

  • Диапазон температур в жилых помещения – от +18 до +22°С;
  • Возможно превышение нагрева не должно быть более 4°С;
  • Снижение температуры — не ниже 3°С.

Если эти показания выходят за значение нормы – необходимо обратиться в управляющую компанию. Систематическое нарушение режима работы отопления может быть связано с устаревшим оборудованием контроля. Единственный выход – установка электронного блока контроля централизованного теплоснабжения.

При выборе программатора для автономного отопления нужно учитывать, что подавляющее большинство моделей чувствительно к перепадам напряжения в сети. Поэтому рекомендуется установка стабилизатора напряжения.

С примером установленного управления отоплением можно ознакомиться при просмотре видеоролика:

Системы управления отоплением – от ручного к погодозависимому

В настоящей статье мы решили выяснить, в чем заключаются преимущества современной погодозависимой автоматики, управляющей отопительным котлом. В силу того, что объективно оценить достигнутый в этой области прогресс возможно только в сравнении, рассмотрим основные существующие системы, а заодно познакомимся с протоколом OpenTherm и модулирующими газовыми горелками. Как говорится, вперёд, а выбор уже будет за вами!

Читайте также:
Утепление эковатой: свойства материала, форма выпуска и способы использования

Ручное управление отопительным котлом

Самым распространённым способом управления отопительным котлом было ручное регулирование температуры теплоносителя (надо сказать, что многие котлы до сих пор управляются именно так). Автоматизация была простая, но эффективная – встроенный в котёл термостат вручную настраивался на определенную температуру циркулирующего в системе теплоносителя, например 50 градусов (см. рис.1).

Рис.1. Ручное регулирование температуры теплоносителя

Предположим, при стабильных внешних условиях при этом значении в помещении достигается температура 23°С. В случае постепенного разогрева теплоносителя термостат подаёт команду на выключение газовой горелки, а если теплоноситель остывает – то на включение. Этот циклический процесс объясняет «волнистость» оранжевого графика температуры теплоносителя и зеленого графика комнатной температуры. Если же температура на улице резко упадёт, а термостат продолжит работать в прежнем режиме (50°С), то температура в помещении неизбежно понизится. Для исправления этой ситуации требуется вмешательство человека, который должен повысить значения температуры теплоносителя до более высоких значений.

Неудобство этого способа регулирования налицо – это вовлеченность человека в работу системы отопления и непрерывная работа автоматики розжига горелки.

Плюсы:

  • Не нужно доплачивать за автоматику управления, т.к. она входит в стоимость котла;
  • Высокая точность поддержания стабильной температуры в доме при неизменной температуре на улице.

Минусы:

  • Необходимость регулярной ручной регулировки температурного режима работы котла;
  • Из-за постоянно работающего насоса происходит повышенный расход электроэнергии;
  • Частые циклы включения/выключения быстрее изнашивают автоматику котла.

Управление работой котла комнатным термостатом

Другим известным, но более современным способом автоматизировать работу отопительного оборудования и освободить от контролирующих функций человека, является применение в отопительной системе релейного комнатного термостата.

В настоящее время существует огромное количество моделей комнатных термостатов, но всех их объединяет один общий принцип работы – прибор измеряет температуру в жилом помещении и, в зависимости от окружающих условий и заданного целевого значения температуры, управляет розжигом и выключением газовой горелки котла. Однако инерционность тепловой системы вызывает большие задержки в реагировании на команды комнатного термостата. И часто температура в жилом помещении существенно отличается от заданной (в сторону повышения или понижения), что и отображается на зеленом графике комнатной температуры в виде появления красных (перегрев) и синих (недогрев) сегментов (см. рис.2).

Рис.2. Регулирование температуры релейным термостатом

Следует заметить, что для более быстрого нагрева на котле выставляют более высокую температуру теплоносителя (в нашем случае 80°С). Отсюда и некая «серповидность» формы оранжевого графика – мы видим быстрый нагрев до 80°С, а затем отключение горелки и постепенное остывание до момента, когда комнатный термостат снова подаст команду на включение горелки. Если внешняя температура начнет падать, то термостат начнет чаще включать горелку, и нижняя граница температуры теплоносителя (красная точка «ВКЛ.» на оранжевом графике) будет расти, что компенсирует понижение уличной температуры. Таким образом, созданная обратная связь позволила стабилизировать комнатную температуру без участия человека, хотя и возможны её кратковременные циклические «перегревы» и «недогревы».

В случае применения релейного комнатного термостата автоматика розжига работает значительно меньше, чем при ручном управлении, но из-за высокого порогового значения температуры теплоносителя происходит перерасход газового топлива. Остаётся добавить, что компенсировать этот недостаток удаётся «интеллектуализацией» комнатных термостатов. Так, современные программируемые модели этих приборов позволяют запрограммировать различные суточные и недельные режимы работы. Например, ночью целевая температура в комнатах может понижаться, а днём – повышаться. Аналогично в будни и выходные дни. Наличие гибкого графика целевой температуры позволяет добиться значительной экономии газа. Яркими представителями приборов этого семейства являются термостаты от компании БАСТИОН серии TEPLOCOM TS.

Программируемый комнатный термостат автоматически изменяет температуру по графику, установленному пользователем

Плюсы:

  • Нет необходимости ручного управления работы котла;
  • По сравнению с ручным управлением, уменьшается количество циклов включения/выключения котла, что благотворно сказывается на увеличении ресурса автоматики розжига;
  • Автоматическое отключение насоса при выключенной горелке приводит к существенной экономии электроэнергии.

Минусы:

  • Необходимо дополнительно покупать и монтировать термостат;
  • В доме возможны ощутимые колебания температуры воздуха.

Модулирующие горелки, протокол OpenTherm и погодозависимая автоматика

На сегодняшний день самыми современными и технологически совершенными системами управления отоплением являются приборы, работающие под управлением протокола OpenTherm.

Не вдаваясь в узкоспециализированные подробности, рассмотрим три главных особенности, которые отличают оборудование с OpenTherm от описанного выше.

Особенность первая: управление модуляцией пламени

Появление новых газовых котлов с горелками, способными управлять модуляцией пламени, открыло новые возможности в организации экономичного и эффективного отопления. Поясним, что модуляцией пламени называется регулирование мощности нагрева. При слишком большой мощности происходит частое включение и выключение котла (тактование), а при малой – достижение заданной температуры делается невозможным. Т.е. наилучшей модуляцией пламени считается уровень горения, при котором котел не выключается, и достигнуто заданное значение температуры. Иными словами, управление модуляцией пламени – это способность автоматики котла, в зависимости от внешних условий, оптимально изменять интенсивность горения пламени горелки, не выключая её. Ни один из описанных выше способов управления котлом не может управлять модуляцией пламени. Для работы с новыми горелками был придуман протокол OpenTherm, который позволил эффективно объединить функционирование новых горелок с возможностями «умной» погодозависимой автоматики и электроники.

Особенность вторая: работа с автоматикой

По сути дела, OpenTherm – это мост, который был проложен между производителями котлов и производителями прочей электроники и автоматики. Единый, не зависящий ни от кого, протокол стандартно описывает все основные команды по работе с модулирующими горелками. Это позволяет подключить к нему самое разнообразное оборудование: от термостата до программируемых термоконтроллеров, к которым может быть присоединено большое количество термодатчиков. Современные термоконтроллеры представляют собой программируемые приборы, которые в состоянии обрабатывать показания термодатчиков, расположенных как в различных зонах отапливаемого объекта, так и на улице. Теплоконтроллер поддерживает заданное значение целевой температуры и может его изменять в зависимости от команд пользователя, времени суток или дня недели. Анализируя полученные данные температуры снаружи и внутри помещения, контроллер задает погодозависящий режим работы для модулирующей горелки котла и насосов (см. рис.3).

Читайте также:
Утепление деревянного дома снаружи: какой теплоизоляционный материал выбрать

Рис.3. Регулирование температуры теплоинформатором Teplocom Cloud

На графике мы можем видеть, что горелка практически не выключается, а только меняет интенсивность своего горения. При этом, вне зависимости от внешних условий, график целевой температуры меняется крайне незначительно и лежит в границах гистерезиса теплосистемы. Дополнительными преимуществами этой системы управления является заметное повышение ресурса работы горелки (отсутствуют циклы розжига, быстрого нагрева и остывания), а также достигается существенная экономия газового топлива.

Особенность третья: доступ к настройкам автоматики и фиксирование ошибок

Наличие «умного» управления и существование обратной связи между котлом и управляющим оборудованием открывает третью особенность протокола OpenTherm – возможность по одному протоколу получить полный доступ к настройкам автоматики котла и произвести их изменение с любого управляющего устройства (смартфона). Дополнительно открывается доступ к информации обо всех ошибках, случившихся при работе тепловой системы, что даёт неоценимый инструмент для обслуживающего и контролирующего работу оборудования персонала.

Плюсы:

  • Минимальное колебание температуры воздуха в доме вне зависимости от температуры на улице, что обеспечивает максимальный комфорт;
  • Минимальный расход топлива по сравнению с другими методами управления;
  • Корректировка температуры идет за счет изменения модуляции пламени горелки, что минимизирует количество циклов включения/выключения;
  • Возможность удаленного мониторинга состояния котла и изменения его настроек.

Минусы:

  • Более высокая цена по сравнению с другим оборудованием, что компенсируется за счет меньшего потребления газа.

Теплоинформатор TEPLOCOM CLOUD

В этой статье мы рассмотрели основные способы управления отопительным котлом – от ручного до автоматического, при помощи модулирующих горелок с OpenTherm. Одним из современных устройств, которые способны реализовать новейшие технологии по управлению системой отопления, является теплоинформатор TEPLOCOM CLOUD. Это электронный прибор, расширенный функционал которого далеко выходит за рамки простого поддержания стабильной температуры в доме. На основе «облачной технологии» в нём реализован механизм передачи информации от подключенного оборудования и удалённое управление им через смартфон.

TEPLOCOM CLOUD — тепло вашего дома всегда под контролем!

Возможности теплоинформатора TEPLOCOM CLOUD:
  • Информирование об авариях и состоянии системы отопления. Управление котлом через смартфон из любой точки мира.
  • Постоянный контроль состояния газового котла, температуры на улице и в доме, температуры теплоносителя, возникновения протечки, наличие сети 220В. Существует возможность подключения контактных датчиков для дополнительного оповещения.
  • Управление температурой производится в зависимости от уличной температуры по технологии WeatControl, что минимизирует колебание температуры в доме в течение дня.
  • Индивидуальное расписание комфортной температуры на всю неделю.
  • Возможность размещения до 10 беспроводных датчиков температуры в радиусе 300 метров.
  • Снижение потребления газа до 30% и борьба с вредными выбросами в атмосферу благодаря сокращению образующегося углекислого газа.
  • Бесплатные приложения для работы с TEPLOCOM CLOUD на Android и iOS.
  • В комплект поставки входит: теплоинформатор, беспроводный радиодатчик температуры, датчик протечки, уличный датчик температуры, датчик температуры теплоносителя, GSM SIM карта, встроенная Li-ion батарея.

Благодаря техннологии WaetControl управление системой отопления происходит с учётом изменений погоды на улице. Что минимизирует колебания температуры в доме в течение дня.

Таким образом, мы видим, что существует большое количество приборов, которое обеспечивает работу тепловых систем с той или иной степенью комфорта и экономичности. Выбор лучшего из них, как всегда, остаётся за потребителем

Греем дом: как управлять отоплением?

Отопительный сезон уже в разгаре, стало быть, все что связано с отоплением, с каждым днем становится все актуальнее.

Не будем касаться темы центрального отопления (в многоквартирных домах): оно не сильно зависит от собственника жилья. Поговорим об индивидуальных системах отопления и управлении ими. Это будет интересно не только тем, кто только планирует стройку, но и владельцам уже построенных домов: многие системы отопления вполне возможно модернизировать. Затраты на переоборудование при этом покроются экономией на ежемесячных расходах, а окружающая среда скажет спасибо за экономию ресурсов.

Начнем с основ. Что влияет на температуру в помещении?

    Отопительные приборы: радиаторы, конвекторы, теплые полы, регистры (отопительные трубы большого диаметра), теплые плинтуса и стены, инфракрасные обогреватели и другие источники тепла. Да, именно отопительные приборы передают тепло от источника — допустим, котла — к потребителю (отапливаемому помещению). Это основной фактор, влияющий на температуру в помещении: обогреть в лютый мороз можно даже палатку с тонкими стенами, вопрос мощности источника тепла и отопительных приборов. И наоборот, самое утепленное помещение, не имеющее отопления, рано или поздно замерзнет.

Теплоизоляция ограждающих конструкций. Под ними мы подразумеваем наружные стены, окна, двери, кровлю, полы нижнего этажа, фундамент или цоколь — в общем, всё, что так или иначе контактирует с менее нагретой окружающей средой.


Тепловая инертность отапливаемого сооружения, то есть скорость изменения его температуры. Это суммарная теплоемкость отапливаемых элементов. Инертность легкого каркасного дома, например, намного ниже, чем у дома кирпичного.

Воздухообмен в помещениях. Когда мы открываем окна, чтобы проветрить комнату, нагретый воздух из нее сменяется более холодным наружным. С воздухообменом уносится от 10 до 30 % тепла, немало, да?

Системы управления условно делятся на три типа — ручное, термостатическое и погодо-зависимое.

Ручное управление

Очевидно, самое простое управление. Владелец вручную выбирает режим и температуру отопительных приборов, руководствуясь измерениями температуры, собственными ощущениями и опытом.

С сожалением приходится признать, что ручное управление чаще всего встречается в частных домах в России. Домовладельцы как правило, считают (как правило ошибочно) что досконально знают особенности помещений и, имея большой опыт, безошибочно выставляют нужные параметры. Многие приноровились управлять даже довольно большими и разнотемпературными системами отопления со множеством контуров и регулировок.

Плюсы:
  • простота
  • неприхотливость
  • очень низкие вложения в систему управления отоплением
Минусы:
  • Человеческий фактор. Мы спим, устаем, забываем, ошибаемся. Когда мы спим или отсутствуем, система отопления работает в последнем заданном режиме и не учитывает изменений ситуации. Даже при неизменной погоде уличная температура ото дня к ночи колеблется, и температура внутри помещений поднимается и опускается следом. Интенсивность колебаний температуры и отставание по времени при этом зависят от теплоизоляции и инертности здания.
  • Реакционность — иначе говоря, задержка реакции. Проснувшись утром, мы можем обнаружить, что дома холодно. Естественно, мы решаем прибавить температуру в котле или в контуре управления, но результата придется ждать, как правило, пару часов, так что завтракать придется, стуча зубами. Температура же вырастет, когда мы будем на работе, так что вечером приедем в разогретый до духотищи дом. Чтобы комфортно поужинать, придется открыть форточку и выпустить на улицу «лишнее» тепло вместе с отнюдь не лишними денежками из кошелька.
Читайте также:
Печи Харвия: предназначение, особенности выбора, плюсы и минусы, модели
Термостатическое управление

Благодаря своей относительной простоте оно сейчас активно набирает популярность. Суть ясна из названия — система пытается поддерживать заданную пользователем температуру внутри помещения, не учитывая при этом внешних факторов.

Под одним определением скрывается множество типов управления: механических, электронных и электронно-механических. Суть всегда одна — система регистрирует отклонения температуры от заданной на величину гистерезиса (выбираемой или установленной разницы температур) и переключает режим работы. То есть, если вы выставили в качестве желаемой температуру в 22°C и гистерезис в 0,5°C, то классический термостат будет поддерживать диапазон 21,5-22,5°C.

  • Механические термостаты по сравнению с электронными намного проще и дешевле, но их нельзя ни перепрограммировать, ни переобучить.
  • Электронный термостат можно заставить включать пониженный режим отопления для дачи в будние дни, а к выходным, учитывая инертность здания, умный термостат включит обычный режим отопления, чтобы в заданное время температура в доме поднялась до комфортного уровня.
  • Есть механические и электронные устройства для поддержания постоянной температуры, действующие не по принципу вкл/выкл, а плавно изменяющие поток жидкости в радиаторе, например, термостатические вентили или управляющие котлом электронные термостаты, которые не просто включают или отключают котел, а плавно меняют его температуру, взаимодействуя с системой управления.

Все термостаты между тем имеют один жирный минус — как бы они ни обучались, они не в состоянии компенсировать резкие и сильные изменения погоды, поскольку учитывают лишь температуру в отапливаемом помещении. Любое здание имеет некоторую, как правило немалую, инертность, так что изменения наружной температуры скажутся на температуре внутри помещения не сразу. Реакция (активация отопления) последует с задержкой, но температура внутри помещения в реальности еще какое-то время будет понижаться из-за той же тепловой инертности. Реальная температура внутри здания будет всегда «догонять», стремясь за изменениями температуры внешней.

Так что термостатическое управление отоплением я бы с натяжкой порекомендовал владельцам легких каркасников, не имеющих бетонных полов и/или тяжелых кирпичных или блочных перестенков. Ну или людям, желающим установить только одну цифру и сильно не задумываться о возможностях современной электроники.

Плюсы:
  • Не требуется постоянное участие человека в процессе регулирования
  • Экономия по сравнению с ручным регулированием
  • Широкая функциональность, позволяющая создавать программы управления отоплением с экономными режимами
  • Повышенный тепловой комфорт в помещениях
  • Огромный выбор относительно недорогих устройств контроля и регулирования, в том числе с веб-интерфейсом или управлением со смартфона
  • Относительная простота проектирования и установки
Минусы:
  • Не учитывается уличная температура
  • При установке экономного режима на время отсутствия хозяина необходимо иметь в виду, что в случае резкого и сильного похолодания реакция может быть запоздалой и система может успеть замерзнуть, так что режим понижения нужно устанавливать «с запасом»
Погодо-зависимое управление

Его принято называть ПЗА (погодо-зависимая автоматика). Это самая современная на сегодняшний день система управления отоплением.

Классическая и самая простая ПЗА при регулировании не учитывает температуру внутри помещения вообще. Пользователь лишь задает кривую зависимости температуры отопительных приборов от уличной. Кривая подбирается единожды эмпирическим путем и больше не требует внимания человека.

Но, как показывает практика, такой способ регулирования самый совершенный. ПЗА не ждет, когда здание отреагирует на изменения погоды: она постоянно регистрирует внешние условия и меняет настройки отопительных приборов «с упреждением», не допуская колебаний температуры внутри здания. Список устройств с ПЗА далеко не такой длинный, как у термостатов, но выбор все же есть.

Сегодня ни один захудалый ЖЭК не обходится без ПЗА, ведь погодо-зависимая автоматика экономит деньги абсолютно не в ущерб комфорту. Почти все производители ПЗА не ограничиваются простой зависимостью температуры отопительных приборов от уличной. Учитываются:

  • Внутренняя температура
  • Скорость нагрева помещения при определенной разнице температур — то есть, система запоминает тепловую инертность сооружения.
  • Время разогрева системы отопления, тем самым система может подстраивать алгоритмы работы, не только учитывая параметры зданий, но и свои собственные характеристики.
  • Заданные пользователем минимумы и максимумы температур. Например, можно заставить систему греть «чуть сильнее», когда на улице слякоть и создать атмосферу тепла и уюта даже если на улице не очень холодно или ограничить максимальную температуру в целях экономии.

Системы, использующие ПЗА, могут автоматически переводить отопление в летний режим и обратно, не требуя вмешательства пользователя. В целом, система с ПЗА, настроенная и отлаженная единожды, может (и даже должна) работать без человеческого вмешательства. Особенность такой системы в том, что ее работа абсолютно незаметна, а тепловой комфорт дома не зависит от времени года и погоды за окном. То есть современные системы с ПЗА взяли все самое лучшее для обеспечения комфортной и безупречной работы системы отопления.

Резюмируя, могу сказать, что за ПЗА не будущее: за ними уже настоящее. Принцип по сути прост и используется много лет там, где ценят комфорт и умеют считать деньги. Количество предложений на рынке растет, квалифицированный персонал есть, настраивать и контролировать системы отопления с ПЗА можно онлайн через приложения и веб-интерфейсы, отказоустойчивость и безопасность оборудования на высоте, а самое главное — умные системы не отменяют ни ручного управления, ни термостатического. На случай отказа автоматики всегда можно предусмотреть вариант ручного включения насосов и котлов и ручного регулирования управляющих элементов.

Плюсы:
  • Самый совершенный принцип регулирования отоплением, самый комфортный, самый экономный, не требующий вмешательства в работе, но при этом имеющий все плюсы термостатического регулирования.
Читайте также:
Утепление пола на балконе: теплоизоляционные материалы, работы своими руками
Минусы:
  • Цена
  • Требования к самой системе отопления: не каждая может работать с ПЗА без модернизации
  • Ограниченное количество производителей контроллеров с ПЗА.
  • Многие производители (Buderus, Vaillant, Viessmann и многие другие) делают контроллеры совместимыми только со своими теплогенераторами (котлами, тепловыми насосами и так далее). Тут, кстати, приятным исключением является российский Zont, он может эффективно управлять почти чем угодно.
  • Требования к квалификации проектировщиков, монтажников и настройщиков выше чем у более простых систем

Конечно же, у каждого производителя свое понимание философии регулирования погоды в доме. Немецкие производители (Buderus, Vaillant) пытаются максимально упростить настройку системы и немного перебарщивают, на мой взгляд, с экономией в ущерб комфорту. Siemens может управлять чуть ли не бесконечно сложными системами, но это уже совсем не пользовательский уровень. Viessmann или Dunfoss не радуют ценой. Российская система Zont радует набором возможностей, универсальностью и ценой, но требует знания хотя бы базовых принципов регулирования для отладки системы самим пользователем.

Это далеко не полный список игроков на этом быстроразвивающемся рынке, и я более подробно коснусь принципов работы и настройки некоторых из них в дальнейших материалах, посвященных этой тематике.

Выражаю благодарность компании Pro-otoplenie в подготовке данного материала. Комфортного Вам отопительного сезона! Искренне ваш, Dinjaa

Системы автоматического регулирования

Выбираете энергоэффективные решения?

Обратите внимание на геотермальные тепловые насосы FORUMHOUSE

Геотермальный тепловой насос EU (старт/стоп)

Геотермальный тепловой насос IQ (псевдоинвертор)

Геотермальный тепловой насос IQ (инвертор)

Даже в достаточно «теплых» регионах нашей страны отопительный сезон составляет не менее семи месяцев, а где и все девять, и залог комфортного проживания в квартире или доме – эффективная система отопления. И в это понятие входит не только надежность оборудования и его достаточная мощность, но и экономичность, а этот параметр в большой степени зависит от управления отоплением. Сравнительно недавно не было альтернативы ручному управлению и регулированию, сегодня же активно применяются системы автоматического регулирования, что гораздо удобнее и выгоднее. В этой части курса Академии FORUMHOUSE при помощи специалиста компании REHAU, рассмотрим:

  • Преимущества автоматического управления отопительными системами
  • Функционал и компоновка автоматических систем управления
  • Особенности систем управляющей автоматики

Преимущества автоматического управления отопительными системами

Современные отопительные системы преимущественно панельного, либо панельно-лучистого типа. Это радиаторы, комбинация теплого водяного пола с радиаторами или только теплый пол. Настроить и поддерживать желаемые параметры отопления можно вручную – с помощью встроенных насосно-смесительных узлов. Особенно, если напольный подогрев частичный. Ручная регулировка по собственным ощущениям температуры в помещениях и степени нагрева отопительных элементов обеспечивает нормальную работу системы. Но полностью раскрыть ее потенциал такой способ управления не способен. Необходимо учитывать и высокую тепловую инерционность теплого пола, из-за которой выход на заданный режим происходит медленнее, чем в радиаторных системах, что дополнительно снижает удобство ручной балансировки.

Тогда как автоматическая настройка и управление обладает рядом преимуществ.

Автоматические системы управления отоплением (охлаждением) обеспечивают точную настройку рабочих параметров с учетом потребностей владельцев и поддержание заданного режима в течение всего периода использования. Они позволяют полностью задействовать функционал оборудования, повысить уровень комфорта и значительно сократить затраты на отопление. По сравнению с ручной настройкой экономия составит до 20%.

Еще одним достоинством автоматики является защита напольных покрытий – система не допустит повышения температуры теплоносителя выше ограничения. Превышение рекомендованной температуры на поверхности пола может вызвать порчу напольного покрытия. Контролируя работу системы напольного обогрева можно не только создать комфортные условия, но и надолго сохранить отличное состояние отделочных материалов.

Функционал и компоновка автоматических систем управления

Автоматическая регулировка в контурах осуществляется посредством повышения или снижения интенсивности работы отопительного оборудования, что позволяет оптимизировать энергопотребление. Помимо повышения энергоэффективности подобные системы предоставляют повышенный комфорт для пользователей.

Базовая система компонуется всего несколькими элементами.

  • Комнатный терморегулятор – контроль и поддержание температуры.
  • Клеммная колодка – коммутация системы.
  • Сервопривод – управление регулирующими клапанами.

Подключение к терморегулятору выносного датчика температуры позволяет контролировать температуру пола или строительной конструкции. Также выносной датчик температуры может использоваться в качестве замены встроенного датчика температуры воздуха.

Внутри большинства терморегуляторов установлен датчик температуры. При отклонении от заданного значения температуры, терморегулятор формирует сигнал на исполнительный механизм (сервопривод). Исходя из пожеланий, пользователь может выбрать терморегулятор не только с базовыми функциями (управление обогревом), но и с расширенными: управление также и охлаждением, переключение режимов работы по таймеру. По желанию в разных помещениях могут быть установлены разные модификации терморегуляторов. При необходимости систему можно дополнительно упростить – соединить терморегуляторы с сервоприводами (до пяти) напрямую, без использования клеммной колодки.

Базовая система оптимальна для применения в квартирах или частных домах. Она эффективно контролирует отопление (охлаждение) и адаптирует режим под запросы домочадцев.

Если же речь идет не только об отоплении, но и о другом климатическом оборудовании (кондиционирование, вентиляция, осушение/увлажнение), для комплексного контроля выпускается специализированная система автоматики.

Элементы системы климатического контроля в помещении взаимодействуют по тому же принципу, что и в системе автоматического управления отоплением (охлаждением). С той разницей, что вычислительные процессы, позволяющие оптимизировать работу подключенного оборудования, происходят не в терморегуляторе, а в базовой станции. А компоновка системы помимо стандартного оборудования включает также модули расширения.

Для большинства частных домов и коттеджей достаточно системы с одной базовой станцией, которая рассчитана на управление температурно-влажностным режимом в восьми помещениях. Но при необходимости управления климатом в большем количестве комнат можно объединить до пяти базовых станций.

Особенности систем управляющей автоматики

Наряду с проводными системами управляющей автоматики, элементы которых соединяются кабелем, также существуют системы с беспроводными соединениями. Их установка не требует штрабления стен, что особенно актуально, если монтаж выполняется в доме с уже готовой чистовой отделкой. Независимо от вида систем, все оборудование характеризуется привлекательным дизайном, а интерфейс терморегуляторов интуитивно понятен.

Читайте также:
Циркуляционные насосы для отопления Wilo: подбор, инструкции, отзывы, характеристики

Удаленный доступ осуществляется посредством подключения системы к сети «Интернет», с использованием браузеров или мобильного приложения, что значительно расширяет возможности пользователей. Контролировать температурный режим или климат в помещении в целом, можно из любой точки мира и в любое время. Мониторинг в режиме реального времени позволяет поддерживать оптимальные параметры инженерных систем в отсутствие владельцев и подготавливать дом к их возвращению.

Системы автоматического управления отоплением и охлаждением удобны, практичны и экономичны. Круглый год в доме будет поддерживаться оптимальный микроклимат, не требующий постоянной ручной регулировки. С управляющей автоматикой даже резкое похолодание в отсутствии хозяев не влечет последствий в виде выстывшего дома или повреждений систем отопления.

Типовые схемы систем отопления и способы подключения радиаторов

Системами отопления являются искусственно созданные инженерные сети различных сооружений, основными функциями которых является обогрев зданий в зимнее и переходное время года, компенсация всех теплопотерь строительных конструкций, а также поддержание параметров воздуха на комфортном уровне.

Разновидности разводки отопления

В зависимости от способа подвода теплоносителя к радиаторам распространение получили следующие схемы систем обогрева зданий и сооружений:

  • Однотрубная.
  • Двухтрубная.

Данные способы отопления принципиально различаются друг от друга, и каждый обладает как положительными свойствами, так и отрицательными.

Однотрубная схема отопительных систем

Однотрубная система отопления: вертикальная и горизонтальная разводка.

В однотрубной схеме систем отопления подвод горячего теплоносителя (подача) к радиатору и отвод остывшего (обратка) осуществляется по одной трубе. Все приборы относительно направления движения теплоносителя соединены между собой последовательно. Поэтому температура теплоносителя на входе в каждый последующий радиатор по стояку значительно снижается после снятия тепла с предыдущего радиатора. Соответственно теплоотдача радиаторов с удалением от первого прибора снижается.

Такие схемы используются, в основном, в старых системах центрального теплоснабжения многоэтажных зданий и в автономных системах гравитационного типа (естественная циркуляция теплоносителя) в частных жилых домах. Главным определяющим недостатком однотрубной системы является невозможность независимой регулировки теплоотдачи каждого радиатора в отдельности.

Для устранения этого недостатка возможно использование однотрубной схемы с байпасом (перемычкой между подачей и обраткой), но и в этой схеме первый радиатор будет на ветке всегда самый горячий, а последний самым холодным.

В многоэтажных домах используется вертикальная однотрубная система отопления.

В многоэтажных домах использование такой схемы позволяет экономить на длине и стоимости подводящих сетей. Как правило, отопительная система выполнена в виде вертикальных стояков, проходящих через все этажи здания. Теплоотдача радиаторов рассчитывается при проектировании системы и не может быть отрегулирована с помощью радиаторных вентилей или другой регулирующей арматуры. При современных требованиях к комфортным условиям в помещениях, эта схема подключения приборов водяного обогрева не удовлетворяет требованиям жителей квартир, находящихся на разных этажах, но присоединенных к одному стояку системы отопления. Потребители тепла вынуждены «терпеть» перегрев или недогрев температуры воздуха в переходный осенний и весенний период.

Отопление по однотрубной схеме в частном доме.

В частных домах однотрубная схема используется в гравитационных отопительных сетях, в которых циркуляция горячей воды осуществляется благодаря дифференциалу плотностей нагретого и остывшего теплоносителей. Поэтому такие системы получили название естественных. Главным плюсом этой системы является энергонезависимость. Когда, например, при отсутствии в системе циркуляционного насоса, подключаемого к сетям электроснабжения и, в случае перебоев с энергопитанием, система отопления продолжает функционировать.

Главным недостатком гравитационной однотрубной схемы подключения является неравномерное распределение температуры теплоносителя по радиаторам. Первые радиаторы на ветке будут самые горячие, а по мере удаления от источника тепла температура будет падать. Металлоемкость гравитационных систем всегда выше, чем у принудительных за счет большего диаметра трубопроводов.

Видео о устройстве однотрубной схемы отопления в многоквартирном доме:

Двухтрубная схема отопительных систем

В двухтрубных схемах подвод горячего теплоносителя к радиатору и отвод остывшего из радиатора осуществляются по двум разным трубопроводам отопительных систем.

Существует несколько вариантов двухтрубных схем: классическая или стандартная, попутная, веерная или лучевая.

Двухтрубная классическая разводка

Классическая двухтрубная схема разводки система отопления.

В классической схеме направление движения теплоносителя в подающем трубопроводе противоположно движению в обратном трубопроводе. Эта схема наиболее распространена в современных системах отопления как в многоэтажном строительстве, так и в частном индивидуальном. Двухтрубная схема позволяет равномерно распределять теплоноситель между радиаторами без потерь температуры и эффективно регулировать теплоотдачу в каждом помещении, в том числе автоматически путем использования термостатических клапанов с установленными термоголовками.

Такое устройство имеет двухтрубная система отопления в многоэтажном доме.

Попутная схема или «петля Тихельмана»

Попутная схема разводки отопления.

Попутная схема является вариацией классической схемы с тем отличием, что направление движения теплоносителя в подаче и обратке совпадает. Такая схема применяется в системах отопления с длинными и удаленными ветками. Использование попутной схемы позволяет уменьшить гидравлическое сопротивление ветки и равномерно распределить теплоноситель по всем радиаторам.

Веерная (лучевая)

Веерная или лучевая схема используется в многоэтажном строительстве для поквартирного отопления с возможностью установки на каждую квартиру прибора учета тепла (теплосчетчика) и в частном домостроении в системах с поэтажной разводкой трубопроводов. При веерной схеме в многоэтажном доме на каждом этаже устанавливается коллектор с выходами на все квартиры отдельного трубопровода и установленным теплосчетчиком. Это позволяет каждому владельцу квартиры учитывать и оплачивать только им потребленное тепло.

Веерная или лучевая система отопления.

В частном доме веерная схема используется для поэтажного распределения трубопроводов и для лучевого подключения каждого радиатора к общему коллектору, т. е. к каждому радиатору походит отдельная труба подачи и обратки от коллектора. Такой способ подключения позволяет максимально равномерно рассредоточить теплоноситель по радиаторам и уменьшить гидравлические потери всех элементов системы отопления.

Обратите внимание! При веерной разводке трубопроводов в пределах одного этажа монтаж осуществляется цельными (не имеющими разрывов и разветвлений) отрезками труб. При использовании полимерных многослойных или медных труб все трубопроводы могут быть залиты в бетонную стяжку, тем самым снижается вероятность разрыва или подтекания в местах состыковки элементов сети.

Разновидности подключения радиаторов

Основными способами подключения приборов отопительных систем является несколько типов:

  • Боковое (стандартное) подключение;
  • Диагональное подключение;
  • Нижнее (седельное) подключение.
Читайте также:
Рейтинг напольных газовых котлов: российских, лучших для частного дома и другие

Боковое подключение

Боковое подключение радиатора.

Подключение с торца прибора – подача и обратка находятся с одной стороны радиатора. Это наиболее распространенный и эффективный способ подключения, он позволяет снять максимальное количество тепла и использовать полностью теплоотдачу радиатора. Как правило, подача находится сверху, а обратка снизу. При использовании специальной гарнитуры возможно подключение снизу–вниз, это позволяет максимально спрятать трубопроводы, но снижает теплоотдачу радиатора на 20 – 30%.

Диагональное подключение

Диагональное подключение радиатора.

Подключение по диагонали радиатора – подача находится с одной стороны прибора сверху, обратка с другой стороны снизу. Такой тип подключения используется в тех случаях, когда длина секционного радиатора превышает 12 секций, а панельного 1200 мм. При установке длинных радиаторов с боковым подключением присутствует неравномерность прогрева поверхности радиатора в наиболее удаленной от трубопроводов части. Чтобы радиатор прогревался равномерно, применяют диагональное подключение.

Нижнее подключение

Нижнее подключение с торцов радиатора

Подключение с низа прибора – подача и обратка находятся внизу радиатора. Такое подключение используется для максимально скрытого монтажа трубопроводов. При монтаже секционного прибора отопления и подключения его нижним способом подающий трубопровод подходит с одной стороны радиатора, а обратный с другой стороны нижнего патрубка. Однако эффективность теплоотдачи радиаторов при такой схеме снижается на 15-20%.

Нижнее подключение радиатора.

В случае когда нижнее подключение используется для стального панельного радиатора, тогда все патрубки на радиаторе находятся в нижнем торце. Конструкция самого радиатора при этом выполнена таким образом, что подача поступает по коллектору сначала в верхнюю часть, а затем обратка собирается в нижнем коллекторе радиатора, тем самым теплоотдача радиатора не снижается.

Нижнее подключение в однотрубной схеме отопления.

Оптимальная разводка отопления в частном доме: сравнение всех типовых схем

При решении задачи обогрева жилья существует множество комбинаций построения системы подачи и отвода теплоносителя. Каждая разводка отопления в частном доме может быть классифицирована по нескольким признакам.

Мы предлагаем разобраться в нюансах обустройства и работы возможных вариантов. Понимание принципов проектирования, плюсов и минусов каждого типа разводки, поможет спланировать геометрию системы и ее устройство с учетом индивидуальных особенностей помещения.

Моделирование оптимальной геометрии контура

Для одного частного дома может быть спроектировано несколько замкнутых водяных контуров, которые будут обогревать разные помещения. Они могут существенно отличаться друг от друга по типу разводки.

При проектировании, в первую очередь, исходят из работоспособности системы, а также оптимальной геометрии с позиции минимизации затрат, простоты монтажа и возможности вписать элементы отопления в дизайн помещений.

Естественная и принудительная циркуляция воды

Нагрев теплоносителя для отопления дома происходит в одном или нескольких устройствах, расположенных внутри помещения. Это могут печи, камины, а также газовые, электрические или твердотопливные котлы.

Давление воды в контуре обеспечивают или за счет использования циркуляционных насосов или выстраиванием геометрии системы, позволяющей создать условия для естественной циркуляции.

Также источником горячей воды может быть централизованная система отопления для нескольких домов. В случае слабого напора возможно подключение циркуляционных насосов для создания дополнительного давления и увеличения скорости перемещения жидкости по трубам.

При выборе варианта с естественной циркуляцией теплоносителя или небольшого давления в трубах при централизованном отоплении необходимо внимательно отнестись к возможности максимального использования физических законов, позволяющих начинать и поддерживать движение жидкости.

Обязательным элементом разводки в этом случае является коллектор разгона. Он представляет собой вертикальную трубу, по которой горячая вода поднимается вверх, затем распределяется по приборам отопления и, потеряв начальную температуру, стекает вниз.

По причине разной плотности возникает перепад гидростатического давления горячего и холодного столба жидкости, который является движущей силой для циркуляции воды.

Вертикальная и горизонтальная разводка

Подвод горячей воды к радиаторам может быть осуществлен разными способами. Разводку условно делят на вертикальную и горизонтальную, по положению труб (стояков), подающих воду непосредственно к радиаторам отопления.

Вертикальные схемы с верхней подачей горячей воды максимально используют разницу гидростатического давления между теплым и холодным сегментами контура, поэтому их практически всегда применяют при естественной циркуляции, а также при низком давлении в системе.

Кроме того, такие схемы работоспособны при аварийном отключении насоса, которое может наступить по причине его поломки или отсутствия электроэнергии.

Разводку с нижней подачей практически не применяют при отоплении с естественной циркуляцией. В случае наличия хорошего давления в системе ее использование оправдано, так как у такой схемы существует два значительных плюса, относительно альтернативного варианта.

  • меньшая суммарная длина используемых труб;
  • отсутствует необходимость проведения трубы по чердаку или технологическим нишам под потолком второго этажа.

Горизонтальную схему разводки отопления используют для одноэтажных частных домов. Если здание имеет два или более этажа, то ее часто используют в случае, когда с позиции дизайна вертикальные стояки нежелательны.

Горизонтальные трубы, подающие и отводящие воду можно органично вписать в интерьер помещений, а также спрятать под пол или в ниши, расположенные на уровне пола.

Выбор одно- или двухтрубного варианта

Подвод горячей воды и отвод охлажденной для системы отопления частного дома можно производить с помощью одной или двух труб. У каждого варианта есть положительные и отрицательные стороны, а также особенности использования в зависимости от типа разводки.

Использование однотрубной схемы подключения

Схему водяного отопления частного дома с использованием одной трубы для подачи горячей и отвода остывшей воды называют однотрубной. Главное преимущество такой системы заключается в минимизации длины труб.

Основные плюсы варианта:

  • наименьшие затраты на приобретение элементов отопительной системы;
  • наиболее простой и быстрый монтаж;
  • наименьший риск аварии.

Основным минусом однотрубного отопления является постепенное уменьшение температуры воды, которая проходит последовательно через все радиаторы в контуре.

Поэтому приходится использовать несколько большую площадь поверхности последних радиаторов (большее число колен), что часто нивелирует ценовую выгоду от минимизации длины труб.

Кроме того, в связи с этим недостатком, существуют ограничения для одного контура на количество подключаемых радиаторов. Если их будет слишком много, то последние по ходу движения теплоносителя практически не будут излучать тепло.

Читайте также:
Печи Везувий: основные преимущества оборудования, технические характеристики

Кроме того, возникает проблема при расчете теплоотдачи. Здесь необходимо учитывать, что отключение первых радиаторов от системы отопления ведет к увеличению температуры входящей воды для последующих устройств.

Применять однотрубные схемы с вертикальной нижней разводкой бессмысленно, так как длина труб будет такой же, как и двухтрубного варианта, что нивелирует все плюсы, но оставляет минусы.

Подключение отопительного прибора, как правило, производят через байпас, чтобы иметь возможность отключить любой из них без остановки циркуляции воды по контуру.

Для экономии на кранах можно не делать обход воды через отводок, но тогда придется останавливать работу этой части системы и сливать воду при необходимости замены или ремонта радиатора.

Самым экономным вариантом является использование одной стальной трубы диаметра 1,5-2 дюйма без радиаторов отопления. Отсутствие кранов и фитингов делает такую систему также самой практичной по причине минимизации риска возникновения протечек или прорывов воды.

Подробно о расчете однотрубной системе отопления читайте в этой статье.

Применение двухтрубного варианта отопления

Схему отопительного контура, когда одну трубу используют для подачи горячей воды к отопительным приборам, а вторую – для возврата охлажденной называют двухтрубной.

Ее основные преимущества:

  • температура подаваемой ко всем радиаторам воды одинаковая;
  • отключение одного или нескольких радиаторов не влияет на температуру подаваемой воды к остальным отопительным приборам;
  • ограничения по количеству радиаторов для одного отопительного контура зависит только от пропускного объема труб.

Основным минусом такой разводки является некоторое увеличение метража труб.

Это ведет к некоторым к дополнительным недосаткам:

  • возрастают затраты на приобретение и монтаж элементов системы отопления;
  • усложняется интеграции в интерьер частного дома.

Количество фитингов и кранов при двухтрубной системе почти такое же, как и при однотрубной.

В зависимости от относительного движения горячей и охлажденной воды схемы двухтрубной разводки подразделяют на два типа:

  • попутную;
  • тупиковую.

Попутная схема. Оба потока двигаются в одном направлении и, таким образом, длина цикла оборота теплоносителя для каждого радиатора одинакова. В этом случае происходит равный по скорости их нагрев при запуске системы отопления.

Тупиковый вариант. Направление движения горячей и охлажденной воды встречное. Нагрев ближних к котлу радиаторов происходит быстрее.

Чем меньше скорость воды, тем более заметен этот эффект, поэтому при естественной циркуляции прогрев одних помещений будет происходить значительно медленнее, чем других.

Если используют циркуляционный насос или расстояние между первым и последним радиатором в контуре незначительное, то эффект неравномерного нагрева при тупиковой двухтрубной разводке незаметен. Тогда выбор в пользу того или иного варианта обусловлен исключительно соображениями удобства проведения обратной трубы.

Включение в систему распределительного коллектора

Популярным в последнее время способом организации водяного отопления является так называемая “лучевая схема” с применением распределительного коллектора.

Такой метод разводки надежно работает только при хорошем давлении воды в системе, поэтому его не используют при естественной циркуляции.

Лучевая система подключения радиаторов

Наиболее равномерное и управляемое разделение потока теплоносителя по приборам отопления можно осуществить с помощью распределительного коллектора.

Устройство включает в себя две гребенки, в одну из которых горячая вода поступает из котла и распределяется по радиаторам, а в другую охлажденная вода возвращается и направляется обратно к котлу.

Подключение радиаторов через распределительный коллектор происходит параллельно, поэтому при такой разводке достигается минимальная разница температуры теплоносителя, подводимого к приборам отопления.

Это значительно облегчает расчет параметров радиаторов на стадии проектирования, а также позволяет легко регулировать мощность каждого прибора в период эксплуатации.

Вторым значимым плюсом такой разводки является возможность управления параметрами подачи теплоносителя ко всем приборам из одного места. Коллектор помещают в специальный шкаф с доступом к индикаторам и элементам управления: вентилям, кранам и насосам.

Это удобно с позиции регулирования микроклимата дома и позволяет легче вписать радиаторы в интерьер помещения.

К минусам систем с коллекторной схемой разводки отопления следует отнести максимальную длину труб подвода и отвода воды к радиаторам. Этот вариант является самым дорогим по стоимости элементов контура и самым сложным при монтаже, а также требует определенной квалификации.

Как правило, трубы в лучевой разводке отопления монтируют в стяжку пола. Это означает, что проектировать и устанавливать такую систему необходимо при строительстве или капитальном ремонте частного дома.

Выполнить коллекторный вариант для подсоединения радиаторов или изменить геометрию контуров в помещениях с уже проведенным внутренним ремонтом достаточно сложно. Это второй существенный минус разводки такого типа.

Правила использование теплого пола

Комфортный и очень популярный способ обогрева жилых помещений – обустройство теплого пола. Если отапливаемая площадь небольшая, то можно обойтись одной трубой, помещенной в стяжку пола.

Для больших площадей использование единственной трубы невозможно по следующим причинам:

  • количество подаваемого тепла не хватит для обогрева всего помещения, кроме того этот обогрев будет неравномерным;
  • при большой длине возникает сильное гидродинамическое сопротивление потока жидкости, что ведет к чрезмерным затратам электроэнергии на создание давления и увеличивает риск прорыва воды в местах соединений.

Поэтому, при значительной площади теплого пола, использование нескольких труб является не пожеланием, а необходимостью.

В этом случае подключение осуществляется через распределительный коллектор.

Часто коллектор снабжают смесительным узлом, для регулировки температуры воды, подаваемой к трубам теплого пола. Дело в том, что для радиаторов отопления, как правило, используют жидкость с температурным диапазоном 70-80°С, тогда как для теплого пола необходимо около 40°С.

Регулировка температуры через смеситель отличается надежностью, что очень важно, так как превышение температуры может вызвать существенную деформацию покрытия пола: линолеума, ламината или паркета.

Выводы и полезное видео по теме

Схематичное представление разводки отопления в двухэтажном доме большой площади. Двухтрубная попутная и тупиковая система и теплый пол, подключенные через коллекторы. Исключение конфликта циркуляционных насосов с помощью гидрострелки:

Читайте также:
Трубчатые радиаторы отопления: что это такое, их особенности и использование

Лучевая схема для обогрева двухэтажного здания. Так как чистовая отделка еще не проведена, то хорошо видна вся разводка. Нюансы укладки труб на пол под бетонную стяжку:

Мнение практикующего мастера по установке систем отопления о различных схемах, применяемых в частных домах. Обзор плюсов и минусов естественной циркуляции, однотрубной, двухтрубной попутной и тупиковой, а также коллекторной разводки:

Представленные разводки для отопления домов являются типовыми и могут быть модифицированы с учетом геометрии помещений, необходимых значений температуры или других факторов. При модификации схем необходимо соблюдать законы и основные положения физики, гидравлики, материаловедения и других дисциплин.

В случае решения сложных или нестандартных задач лучше обратиться к специалистам, потому, что переделка систем отопления может выйти даже дороже, чем их моделирование и монтаж.

Если возникли вопросы или есть желание поделиться личным опытом по разводке отопления в своем доме, пожалуйста, оставляйте комментарии к этой статье. Вы можете дополнить свой отзыв фотографией – форма для связи расположена ниже.

Автоматика для отопления коттеджа

В данной статье мы рассмотрим подбор автоматики для систем отопления индивидуальных домов. Типовыми задачами, которые решает система отопления, являются обогрев помещений с помощью радиаторов, поддержание комфортной температуры в контурах теплого пола, приготовление горячей воды.

Что такое система теплоснабжения индивидуального здания?

Любое современное индивидуальное жилье оснащается системой теплоснабжения, которая включает в себя, как правило, четыре составляющие:

  • источник тепловой энергии;
  • система радиаторного отопления;
  • система напольного отопления;
  • система приготовления горячей воды

Рассмотрим автоматизацию этих четырех систем.

1. Котел и система приготовления горячей воды

Источником тепловой энергии для теплоснабжения индивидуального здания в большинстве случаев служит собственный котел, работающий на газообразном или жидком топливе. Современные котлы делятся на две большие группы: одноконтурные и двухконтурные.

Двухконтурные котлы предназначены для нагрева и подачи теплоносителя в контур отопления, а также для приготовления горячей воды (ГВС). В состав двухконтурных котлов входит теплообменник нагрева горячей воды, трехходовой вентиль для переключения режима отопления / приготовления ГВС, циркуляционный насос, автоматика. Горячая вода приготавливается в проточном теплообменнике, поэтому котел должен иметь достаточную мощность, перекрывающую пиковую потребность в горячей воде. Для подключения двухконтурного котла производители рекомендуют установить запорные краны, а также фильтры на входе в котел холодной питьевой воды и теплоносителя из системы отопления.

Одноконтурные котлы предназначены для нагрева теплоносителя контура отопления. В состав котла, как правило, входит система управления и защиты горелки. Циркуляционные насосы и теплообменник нагрева горячей воды должны устанавливаться отдельно. Зачастую с одноконтурными котлами применяют бойлер косвенного нагрева, представляющий собой накопительный бак горячей воды со встроенным в него теплообменником. Для подачи теплоносителя в контур отопления и нагрева ГВС применяется насосный узел обвязки котла DSM-BPU.

Насос контура отопления прокачивает теплоноситель через котел, радиаторы и (с помощью узла смешения) через конуры теплого пола. В контуре отопления устанавливаются термостатические регуляторы, которые изменяют сопротивление контура в зависимости от температуры в помещениях. Чтобы обеспечить циркуляцию теплоносителя через котел в любых режимах работы, в контуре отопления насосного узла DSM-BPU предусмотрен перепускной клапан AVDO. Клапан AVDO может быть настроен на поддержание необходимого минимального расхода в зависимости от применяемого котла. Насос контура ГВС прокачивает теплоноситель через котел и бойлер косвенного нагрева. Сопротивление контура нагрева ГВС постоянно, поэтому установка перепускного клапана не требуется.

Как правило, мощность котла подбирают исходя из среднего потребления тепла контуром отопления и ГВС. Пиковые нагрузки при использовании горячей воды покрываются за счет запаса горячей воды в бойлере косвенного нагрева. В этом случае котел работает либо на контур отопления, либо, если температура воды в бойлере косвенного нагрева упала ниже установленной, переключается на нагрев горячей воды. Такой режим работы называют «приоритет ГВС». Переключение контуров отопления с помощью узла DSM-BPU осуществляется очень быстро и просто: достаточно переключить питающее напряжение с насоса контура отопления на насос контура нагрева ГВС. Установленные на выходе каждого насоса обратные клапаны обеспечат правильное направление потока теплоносителя. Таким образом, для реализации приоритета ГВС достаточно подключить насосы узла DSM-BPU к термостату бойлера косвенного нагрева или к системе управления котла.

В состав насосного узла обвязки котла входят фильтры для каждого контура, предохранительный клапан, кран для подключения расширительного бака, запорные краны на каждом контуре для удобства сервисного обслуживания системы. Установка дополнительной трубопроводной арматуры не требуется.

2. Радиаторное отопление

Обвязка радиатора должна выполнять следующие основные функции: регулировать мощность радиатора в зависимости от температуры в помещении, перекрывать поток теплоносителя в радиатор для обслуживания, ремонта или замены, обеспечивать возможность слива теплоносителя из радиатора на время ремонта

Регулировать мощность радиаторного отопления можно двумя способами: управляя всеми радиаторами в одном помещении одновременно по комнатному термостату или управляя каждым радиатором независимо радиаторным термостатом

Комнатный термостат применяют, если радиаторы закрыты декоративной решеткой, в этом случае температура в месте установки радиатора значительно отличается от температуры в комнате, и радиаторный термостат будет работать некорректно. Также, если в комнате установлено большое количество радиаторов, удобнее регулировать температуру в помещении одним прибором – комнатным термостатом. При использовании комнатного термостата радиаторы, расположенные в данной комнате, подключаются к распределительному коллектору, на котором расположены термоэлектрические приводы. Приводы открывают и закрывают подачу теплоносителя к радиаторам по команде комнатного термостата. Сигнал от комнатного термостата может поступать по проводам (проводная версия) или в виде радиосигнала (беспроводная версия) к ресиверу. Для удобства подключения термоэлектрических приводов можно использовать коммутационную панель FH-WC.

Для возможности отключения радиатора и слива из него теплоносителя необходимо использовать специальные запорные клапаны, например RLV-KD для радиаторов с нижним подключением или 2 шт. RLV для радиаторов с боковым подключением. К этим клапанам можно подключить спускной кран с насадкой для шланга 3/4″ и предотвратить попадание теплоносителя на отделочные материалы при обслуживании и ремонте


Кран спускной для клапанов RLV, RLV-KD с насадкой для шланга 3/4″

Читайте также:
Трубчатые радиаторы отопления: что это такое, их особенности и использование

При использовании радиаторных термостатов на каждый радиатор должны быть установлены термостатический элемент, клапан терморегулятора и запорный клапан, или комбинация из этих элементов

По типу подключения радиаторы делятся на радиаторы с боковым подключением и радиаторы с нижним подключением

Рассмотрим варианты обвязки радиаторов с боковым подключением.

a) Термостатический элемент, клапан терморегулятора и запорный клапанВ качестве термостатического элемента можно использовать элемент с газовым наполнением сильфона RA2994 или электронный термостат living eco.


RA2994


living eco

В зависимости от разводки трубопровода используют различные конструктивные исполнения клапана терморегулятора RA-N


Клапан RA-N угловой


Клапан RA-N прямой


Трехосевой клапан RA-N для подключения справа


Трехосевой клапан RA-N для подключения слева


Клапан RA-N угловой с боковым подключение

Также существуют хромированные версии и исполнения для прессового соединения, см. здесь

В качестве запорного клапана используется прямой или угловой запорный клапан RLV.


Клапан запорный угловой


Клапан запорный прямой

Также существуют хромированные версии и исполнения для прессового соединения, см. здесь

b) Термостатический элемент, гарнитура для бокового подключения RA-K

Гарнитура объединяет в себе клапан терморегулятора и запорный клапан. Применение гарнитуры позволяет опустить пластиковые трубопроводы ниже уровня радиатора и таким образом не допустить попадания на них солнечного света, вызывающего преждевременное старение пластиковых трубопроводов. Кроме того, гарнитуры выглядят очень эстетично и упрощают монтаж.

К гарнитуре RA-K подходят термостатические элементы RA2994 и living eco. В зависимости от способа прокладки трубопроводов следует выбрать гарнитуру с нижним или тыльным подключением трубопроводов.


Гарнитура с нижним подключением
Гарнитура с тыльным подключением

c) Термостатический элемент, гарнитура для бокового одноместного подключения RA 15/6TВ

К гарнитуре RA 15/6TВ подходят термостатические элементы RA2994 и living eco. Эта гарнитура позволяет максимально скрыть обвязку радиатора. Следует иметь в виду, что одноместное подключение снижает теплоотдачу радиатора на 15…20%.

Рассмотрим варианты обвязки радиаторов с нижним подключением

a) Радиатор с нижним подключением без встроенного клапана терморегулятораВ этом случае следует использовать гарнитуру VHS и термостатический элемент. В качестве термостатического элемента можно использовать элемент с газовым наполнением сильфона RA2994 или электронный термостат living eco

В зависимости от разводки трубопроводов используют прямую или угловую версии VHS, а в зависимости от подключения к радиатору версию G 1/2” или G 3/4”.


Угловая гарнитура VHS


Прямая гарнитура VHS

b) Радиатор с нижним подключением со встроенным клапаном терморегулятора с клипсовым соединением RA

В этом случае следует использовать термостатический элемент с газовым наполнением сильфона RA2994 или электронный термостат living eco. В качестве запорного вентиля можно использовать клапан RLV-KD. В зависимости от разводки трубопроводов используют прямую или угловую версии RLV-KD, а в зависимости от подключения к радиатору версию G 3/4” или с переходниками G 1/2”.


Прямой запорный клапан RLV-KD с переходниками G 1/2”


Угловой запорный клапан RLV-KD с переходниками G 1/2”

c) Радиатор с нижним подключением со встроенным клапаном терморегулятора с резьбовым соединением М30х1,5

В этом случае следует использовать термостатический элемент RAW-K или электронный термостат living eco с адаптером K. В качестве запорного вентиля можно использовать клапан RLV-KD. В зависимости от разводки трубопроводов используют прямую или угловую версии RLV-KD, а в зависимости от подключения к радиатору версию G 3/4” или с переходниками G 1/2”.


RAW-K


living eco

3. Напольное отопление

Теплый пол обеспечивает особый комфорт в помещении. При достаточном утеплении теплый пол может обеспечивать компенсацию теплопотерь, но на практике как правило систему теплых полов устанавливают в дополнение к радиаторному отоплению.

Для радиаторов и для теплых полов требуется разная температура теплоносителя. Классические параметры для радиаторов – это80 С на подаче и 60 С на возврате. Для комфортного и безопасного проживания средняя температура поверхности пола не должна быть выше +26 С для помещений с постоянным пребыванием людей, это значение регламентировано Сводом Правил СП60.13330.2012 (актуализированная редакция СНиП 41-01). Для достижения такой температуры поверхности пола температура подаваемого теплоносителя должна быть около 40 С. Чтобы температура поверхности пола была равномерной, температура возвращаемого теплоносителя должна отличаться от температуры подачи не более чем на 5…10 С. Для получения таких параметров теплоносителя теплого пола применяют узлы смешения.

Danfoss предлагает 5 моделей узлов смешения для теплых полов. Модели различаются применяемым насосом и комплектацией


FHM-C5 Компактный узел смешения с 3-х скоростным насосом UPS 15-40, с термостатом безопасности


FHM-C6 Компактный узел смешения с 3-х скоростным насосом UPS 15-60


FHM-C7 Компактный узел смешения с энергоэффективным насосом Alpha 2 15-60, с термостатом безопасности, ограничителем расхода, измерительной диафрагмой


FHM-C8 Компактный узел смешения с энергоэффективным насосом Alpha 2 15-60


FHM-C9 Компактный узел смешения с энергоэффективным насосом Alpha 2 15-40

Конструкция узлов смешения позволяет крепить их напрямую к коллекторам FHF

Для подключения контуров теплого пола применяют, как правило, распределительные коллекторы, оснащенные расходомерами. Расходомеры позволяют визуально наблюдать поток теплоносителя в каждом контуре, что существенно упрощает наладку и обслуживание системы. Чтобы избежать попадания воздуха в петли теплого пола, коллекторы оснащают воздухоотводчиками, в современных системах применяют автоматические воздухоотводчики.

Для регулирования теплых полов в небольших помещениях с одной петлей теплого пола можно использовать терморегуляторы FHV для напольного отопления. Модель FHV-R с термостатическим элементом FJVR регулирует температуру возвращаемого теплоносителя, таким образом поддерживая постоянную температуру поверхности пола. Модель FHV-A с термостатическим элементом RA2994 регулирует температуру воздуха в помещении


Терморегулятор FHV-R и термостатический элемент FJVR


Терморегулятор FHV-A и термостатический элемент RA2994

Для регулирования теплых полов в бОльших помещениях применяют комнатные термостаты. Для достижения максимального комфорта следует применять модели с датчиком температуры пола: проводная версия TP5001MA, беспроводная версия TP5001A-RF, датчик температуры пола TS3.


Комнатный термостат серии TP5001


Датчик температуры пола TS3

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: